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1 _ INTRODUCTION

The fluid dynamics of impinging jets of vertical takeoff and landing (VTOL)

aircraft is of great complexity. The ability to optimize the design of these

aircraft and to predict their performance requires a good understanding of the

jet-induced phenomena associated with them. VTOL aircraft have different

operating modes (hovering and transition in and out of ground effect). The

flow fields associated with these modes of operation are substantially

different. Many of the complex flow phenomena are poorly understood. The main

flow regions associated with a hovering VTOL aircraft are shown in Figure 1.

The impinging jets entrain air, which leads to induced suction pressure on the

lower surface of the aircraft. When the aircraft is hovering near the ground,

further entrainment is caused by the wall jets, increasing the suckdown force

on the aircraft. The wall jets associated with multiple impinging Jets collide

and form a fountain that impinges on the lower surface of the aircraft. This

causes an increase in pressure on the lower surface, resulting in a lift-off

effect that partially offsets the suckdown force on the aircraft.

The majority of the research into VTOL flows to date has been experimental.

A list of references for the experimental work is given in Reference 1.

However, experimental studies of VTOL flows are extremely cumbersome, and

measurements are inaccurate owing to the flow being turbulent, globally

unsteady, and three-dimensional. Experimental studies of the jet flows

indicate that the jet is susceptible to instabilities that cause the shear

layer to roll up into vortex rings. During their spatial evolution, these

rings pair and then merge into larger structures that are initially spatially

coherent but eventually break down into turbulence. The characteristics of

* large-scale structures in turbulent flows have been a focus of research due to

their importance in turbulent transport and noise production. There is also

evidence of the presence of large-scale structures in impinging jet flows.

Due to their deterministic nature, these large-scale structures have been

studied both analytically and, more recently, numerically. Only within the

past few years have sufficient advances in computer capabilities made it

feasible to attempt numerical simulation of the three-dimensional viscous VTOL

flow fields. While numerical simulations are not expected to replace

experimental investigations, they are expected to complement experimental

efforts in resolving many of the complex problems associated with VTOL flows.

TR-403/4-87 1
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Computational efforts for investigating impinging Jets were initially

limited to solving two-dimensional problems. Using an incompressible inviscid

rotational flow model, Rubel2 investigated the normal impingement of axi-

symmetric Jets and the oblique impingement of two-dimensional Jets upon a flat

surface. This model was then extended to allow three-dimensional computa-

tions. 3 Kotansky and Bower4 investigated planar turbulent jet impingement by

solving the time-averaged Navier-Stokes equations using a one-equation turbu-
.. ,,p

lence model. In this approach, it was necessary to specify the turbulence

length scale distributions. To avoid this disadvantage, Agarwal and Bower
5

replaced the one-equation turbulence model with the two-equation (k-E) turbu-

lence model. The work of Kotansky and Bower 4 was extended to solve the problem

of three-dimensional lift jets in ground effect by Bower et al. 6 This work

was the first attempt to calculate both interacting Jets and the subsequent

fountain formation. Computer limitations restricted the computations to a

relatively coarse computational mesh and to low Reynolds numbers.

More recent studies include the unsteady simulations of Childs and Nixon
7'8

9

and Rizk and Menon.9 In their investigations, Childs and Nixon used the com-

? ., pressible Navier-Stokes equations to investigate fluid/acoustic interactions in

I two different regions of the VTOL flow field. An isolated, single impinging

jet was investigated by assuming an axisymmetric configuration, and the upwash

fountain, which results from the collision of two planar wall Jets, was studied

." for three-dimensional flows. The incompressible Navier-Stokes equations were

used by Rizk and Menon to simulate both planar single impinging Jets and an

array of three-dimensional impinging Jets. Both the impinging jet and the

fountain caused by the collision of the wall Jets were modeled in these three-

dimensional simulations. The simulations were directed toward studying the

effect of controlled excitation on the development of large structures in the

impinging Jets. The results presented by Rizk and Menon9 are preliminary

* results that were obtained at the early stages of the present investigation.

The three-dimensional, time-dependent Navier-Stokes equations are used here

to investigate the characteristics of Jets impinging on the ground and of the

fountain generated due to the collision of the wall Jets that are formed by

the impinging Jets. Both steady-state and unsteady computations are performed.
X.N In the unsteady computations, the behavior of the Jets and the fountain due to

forcing introduced at the jet exit is investigated. The disturbances introduced

% at the jet exit are axisymmetric, azimuthal, and random disturbances.

TR-403/4-87 2
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2. FORMULATION

The problem under investigation here is that of an infinite row of jets

impinging on the ground. This problem contains the essential features of twin

jets impinging on the ground, simulating the hovering configuration. The jets

are assumed to exit from a horizontal plate parallel to the ground. The x-z

plane is assumed to be the plane of the jet axes, with the x-axis in the

horizontal direction and the z-axis in the vertical direction upwards. The

y-axis is normal to the plane of jets. The velocity components in the x-, y-,

z-directions are u, v, w, respectively. The governing equations and the

boundary conditions used are described below.

2.1 Governing Equations

In turbulent flows, a wide range of length and time scales exist. The

separation between the largest scales of motion and the smallest scales of

* motion widens as the Reynolds number increases. For VTOL f lows, the numerical

resolution of all relevant scales of motion is impossible. Modeling of some

* aspects of the flow is therefore necessary. In the classical approach,

based on Reynold's ideas for solving turbulent flow problems, the Navier-Stokes

equations are averaged. All fluctuations are modeled, and only mean flow

variables are calculated. Only steady-state solutions are possible. In the

VTOL problem, the flow field is usually both unsteady and turbulent.

Furthermore, different flow regions exist in which the scales of motion vary

greatly from one to another. It is, therefore, difficult to resolve all the

relevant scales using the current computing capability. Here, the large-eddy

simulation (LES) approach is followed. In this approach, all scales

resolvable by the grid resolution are computed explicitly using the

time-dependent equations, while the small-scale turbulence structures, which

are nearly universal in character, are modeled by an eddy viscosity

formulation that simulates the energy cascade into the small scales. The use

of the time-dependent equations in this manner provides the ability to

* investigate the temporal development of the flow field. A broad range of

problems may, therefore, be investigated, e.g., the unsteady separation in

boundary layers, 10the evolution of large, spatially coherent structures in

jets, 1 1 and the different stability modes in jets. 1 2

TR-403/4-87 3
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In the large-eddy simulation approach, a flow variable f is decomposed as

follows:

f + f'

where f is the large-scale, resolvable part and f' is the subgrid-scale, unre-

solvable part of the variable f. The large-scale component f is defined by

-T( fG( - ') f(x') dx' (1)

where G(x - x') is a filter function. Applying operation (1) to the

incompressible Navier-Stokes equation

q + V a (qq) Vp + V V2q (2)

'9 and to the continuity equation

V q -0 (3)

• leads to the following equations:

+± +V(q qT) ~+vV2- (4)

V'q = 0 (5)

where q is the velocity vector, p is the pressure and v is the kinematic
T

viscosity. The term q q includes unresolvable variables and therefore is not

explicitly calculated. This term is given by

T --- T - T +q + T ,T

q q m q q + q q + + q' q . (6)

The Fourier transform method used by Mansour et al. 1 3 allows the first term

on the right-hand side of Equation (6) to be easily calculated. Otherwise

this term may be written as

q q T'Wqq T+ (q q Tq qT (7)
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where the term within parentheses is the Leonard term. Leonard shows that

this term may be expanded in a Taylor series in terms of the resolvable

variables. The last three terms in Equation (6) are usually modeled in terms

of the resolvable variables; however, part of their effects can be captured by
15

a Taylor series expansion of the resolved variables. Here we follow

Deardorff1 6 in lumping the Leonard term with the subgrid terms and modeling

R, where

T -- T
R-qq -qq

In this case, Equation (4) becomes

~VO(q q +t)-VP+ v V~q (8)

where the elements t of the tensor T are given by
Tii

ij = Rij 3 Rkk ij

and

1
P = p + Rkk

The elements of T, responsible for the energy drain to the subgrid scales,

are represented by an eddy viscosity model:

Tij - - 2 v

where the element Sij of the rate-of-strain tensor S is given by

sij 2 ar a+ .

*Here

(u, u , u 3 ) - (u, v, w)

(x1 , x 2, x3) - (x, y, z)

Smagorinsky's1 7 model for the eddy viscosity, also used by Deardorff, is

given by

5 = (CIA) 2 (2 S j Sij)1/ 2
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where C1 is a constant and A is the characteristic length scale of the smallest

resolved eddies. In the present simulations, we use C1 
= 0.1 similar to

Deardoff.

The equations governing the resolvable variables are written as

qIt + V. q T - 2(v + v )SJ - -VP (9)

and

V.0, - 0 . (10)

where the bars have been dropped for simplicity. By taking the divergence of

Equation (9), the following equation governing P is obtained:

V2P _ _V.1, -vq (11)

where

, V'[9. - 2(v + va)S)

and

Vo(1 0

The system of Equations (9) and (11) is equivalent to the original system,

Equations (9) and (10), and is used here in place of it.

2.2 Boundary Conditions

The vector equation (9) is solved subject to the periodicity condition in

the x-direction, thereby simulating an infinite array of jets. The condition

-0 o (12)

with av/ay being determined from the continuity equation, is applied at the

0, side boundaries of the computational domain parallel to the row of jets. The

computational mesh in the present calculations is not fine enough to resolve

the viscous sublayer. Therefore, it ts not proper to apply the no-slip con-

dition at the upper and lower boundaries. The solution in the near wall region

is therefore patched to the solution at the first computational mesh point
away from the wall through the use of Spalding's1 8 expression in this region.

TR-403/4-87 6
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The vertical velocity component is specified to be zero at the lover boundary

and the upper boundary, except at the jet exit where it is specified as a

function of space and time. The other two velocity components are specified

to be zero at the jet exit.

Equation (11) is solved subject to the periodicity condition in theI
x-direction and the following Neumann boundary conditions determined from

Equation (9) at the top and bottom boundaries:

a- -ke q ~+ q) (13)

where k is a unit vector in the vertical direction. Unlike the solid-wall

boundaries, the side boundaries of the computational domain, which will also be

referred to as outflow boundaries, are not physical boundaries. They are

V artificial boundaries created to limit the computational domain to a finite

region. The boundary conditions are therefore not known at these boundaries.

In cases where experimental measurements are available at these boundaries,

it is possible to use them as boundary conditions. However, in general, such

measurements are not available. Without experimental data, it is necessary to

choose a set of boundary conditions at the side boundaries. In general, these

conditions will create local disturbances near the boundaries. However, since

the side boundaries are mainly outflow boundaries, it is expected that the

local disturbances at the boundaries will have a negligible effect on the inner

computational region of interest, provided reasonable conditions are applied

and the boundaries are placed far enough away from the jets. A set of
" approximate" boundary conditions at the side boundaries was chosen for

Equation (9) and is given by Equation (12). For the pressure equation, the

condition

2P_ . 0(14)

is applied, with two modifications. The modifications are necessary due to the

approximate nature of the conditions applied at the side boundaries. At the

side boundaries there does occur some inflow due to the entrainment caused by

the impinging jets, the wall jets, and the fountains. However, since the

solution outside the computational domain is not known, it is not possible

to specify the correct velocity distribution at the boundary. The weak

TR-403/4-87 7



boundary conditions applied here were found in certain calculations to allow

a continuous, nonphysical buildup in the inflow velocity in certain regions

of the boundary, resulting in numerical instability. To avoid this problem,

a restriction is imposed on the inf low velocity. At boundary points where the

inflow velocity exceeds a certain specified limit, the value of Wa/y is

modified so that the inflow velocity does not exceed this limit. Secondly, the

existence of a solution to Equation (11) with Neumann boundary conditions

applied at the horizontal and the side boundaries requires that

fsdV f dS (15)

V S

where s is the source term appearing on the right-hand side of Equation (11), V

is the volume of the computational domain, S is the boundary of the computa-

tional domain, and n is the outward normal to that boundary. Since the value

* of an is specified on the upper and lower boundaries by Equation (13),

* condition (15) is satisfied through the proper modification of Wa/n on the

side boundaries. Assuming that the first modification to the pressure

boundary condition, limiting the inflow velocity, leads to the following

* boundary condition along the boundary 5:

in order to satisfy Eq. (15), 3P/3n is modified at the side boundaries so that

f a dV - f g d
ap S

2A

where A is the area of one of the side boundaries.

2.3 Random Initial Conditions
Here we present the rationale behind the model used to generate the random

turbulent field that is imposed at the jet exit. We generate a random

turbulent field, subject to particular constraints (to be discussed below) and

impose this field at the jet exit. Numerical simulation of the subsequent

development of the flow field is then carried out. By imposing such a random

field at the jet inflow boundary condition, during the spatial development of

TR-403/4-87 8



the jet, the unstable frequencies will amplify in a realistic manner. This

approach is a more accurate way of forcing the jet compared to forcing at a

single frequency. Furthermore, this approach does not require the a priori

identification of the most unstable frequency, and the stability of the jet

flow can be studied in a more general way. Due to the presence of the solid

surfaces, the characteristic unstable frequency may depend on the location of

the ground wall, and identification of the most unstable frequency is quite

difficult. By imposing a random field at the jet exit containing all the

possible frequencies (limited, of course, by the grid resolution), the most

I unstable frequency (or mode) may evolve naturally. Such an approach is

expected to give a better understanding of the instability mechanism involved

during the impingment of a jet on a ground plane.

The instantaneous velocity q j(x, t) at the jet exit is defined by

q(x, t) - q (x) + q '(x, 0, x - (x, y) (16)

where qj and qj' are the ensemble average and the random turbulent jet velocity

at the jet exit, respectively. We define the turbulent field qj'(:, t) at the

jet exit as

q,(x, t)- a(x) (k, w)e -i(kx + ut) (17)
1koI<K I+ w <

In general, the turbulent field is three-dimensional. However, this field is

specified at a given z-location and, therefore, the field is assumed to be a

function of x and y only. Here, k - (k x, k y), is the wave-number vector and

w is the frequency. Also, K - (Kx K y), is the wave-number cutoff and 1 is

*the frequency cutoff, which are determined by the grid resolution and computa-

tion time, and qj(k, w) are the Fourier modes of qj'(x, t). Equation (17) is

assumed to satisfy

o = 0 (18a)

22
!j - a (x) . (18b)

TR-403/4-87 9
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Here, the bar indicates ensemble averaging and o(x) is the root-mean-square

value. The random field is then generated such that Equation (18) is satis-

fied. In the subsequent formulation, the subscript J is omitted for simpli-

city. On averaging Equation (17), we obtain

________~k~ +' Af~~jq'(x, t) - a(x) E l(k, w) e - ~ (19)

k, wi

which implies that for Equation (18a) to be satisfied,

q(k, w) - 0 for each (k, w) (20)

Also,

2 i(x + 0 V--q' (x, t) o(x) j l(k, w) e .. + A) v)ei .

- a2 (x) j (k, w)j*(Q, v) ei1 k-  L).x + (w- v)t] (21)
Wk,; t,v - -

We then choose q(k, w) such that

j(k, w) ;*(t, v) - (k, w) q*(k, w) 6(k 9.&, w - v)

- IZ(k, w)12 6(k- ,, W - v) (22)

where 6 is the Dirac delta function and q* is the complex conjugate of q.

The delta function is defined as

1, k - L, w - v

6(k - t, w- v) (23)
-0 k O 0 L, w 0v

Then, Equation (22) becomes

q' (, t) - 2(x) Iq(k, w12 . (24)

TR-403/4-87 10



Note here that, by virtue of this equation, we are assuming that the Fourier

modes j(k, w) are chosen such that there is no correlation between the

various wave-number and frequency modes, that is, the wave numbers k and 1 are

are uncorrelated. This is a reasonable first approximation.

We now choose

I(k, 0)12 - 1 (25)

k, W

so that Equation (24) satisfies the requirement given by Equation (18b). Now,

li(k, W)12 is the turbulence kinetic energy present in each (k, W).

Therefore, the total turbulence energy is

F, 1 j w)(k, 0)12 J E(k, w) dk dw= E(k, w) Ak Aw (26)
tk, w C S - W ,

*. where Ak Aw is the volume contained within the surface S. Also E(k, w) is the

*. turbulence kinetic energy spectrum in the (, w) space. If we assume that

there are N cells within the surface S and also assume Iq(k, )1 is constant

within each cell, then we may write

E Iq(k, )12  I. Na k, W)1t (27)
t, w CS-

On combining Equations (26) and (27), we get

m#" Iq k, 3) 2 Ak Aw

Sq(k, - ---- E(k, w) (28)•~- Ns
IS

The Fourier modes 4(k, w) can then be determined provided that the energy

spectrum E(k, w) is known. It is possible to specify the energy spectrum from

experimental data. For example, we may write

E(k, w) - E (k) E2(w) (29)

where E (k) [- E (k, k )] is the two-dimensional energy spectrum in the wave-

number space and E2(w) is the one-dimensional energy spectrum in the frequency

TR-403/4-87 11

711



space. We may then choose E (k) and E2(w) from experimental data and normalize

the energy spectrum such that

J. ] E(k, k , w) dk dk =dw 1 • (30)

Then the Fourier modes q(k, w) would have the following properties:

(i) q~,w) - 0 for each (,w

(ii) q(k, w) is statistically independent of q(t, v) for k L , Wt V

.:(iii) ) 1k ) 2,. -=- E(k) E2(W) -F(t, W) (31)

So the Fourier modes w(, w) are then determined subject to constraints

(i) through (iii). The modes so defined are also chosen such that Equation (18)

6O is implicitly satisfied. Once these modes are known, the random turbulent field

.N" q(x, t) can be immediately determined by taking a fast Fourier transform by

virtue of Equation (17). The steps necessary to determine the random field

can then be summarized as follows:

(1) Choose an energy spectrum E(k, w) from experimental data and

normalize according to Equation (30). Also determine K and Q, the

wave-number and frequency cutoffs.

(2) Choose an elemental volume ( Scx Scy bw) and determine the number of

cells (N.) within that volume.

(3) Use Equation (28) to determine Iq(k, J17 2 for each (k, w).

91 Note that

, q(k, -)I 2). j 2 +1- 2 - F(k,w)

,* where the subscripts R and I denote the real and imaginary parts of q.

-We assume

1;~ ~ 1 22I12 F(k, W) - q*

TR-403/4-87 12
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Then
;q* F (IS. w)

(4) For IkI < K and IwI < Q, generate random numbers 'R, R ) such that

R -.R.0 and = - for each (k, w). The vector R indicates

that the random field is generated for all q, q G (u, ,

(5) For all (k, w), compute the Fourier modes

( k - ) ^ - (q*R, q* 2)

where ( , ) indicates the real and imaginary parts.

* (6) Obtain q(x, t) by taking a fast Fourier transform of j(k, w).
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3. NETHOD OF SOLUTION

To solve the flow governing equations, we use a staggered computational

mesh.1 9 This resolves many of the difficulties associated with incompress-

ible Navier-Stokes computations on a regular mesh.2 0 The main computational
mesh is the P-mesh. The pressure P is defined at the nodal points

(xiv Yj, zk) - (ift, Jy, kAz) of this mesh, where bi, by, Az are the mesh

spacings in the x-, y-, z-directions, respectively. The u-, v-, w-velocity

components are defined at the nodal points (xi+k , yi, Zk), (xI s yi+k, Zk), (x ,

Yj, Zk+k) of the u-, v-, w-meshes, respectively. These meshes are displaced

from the P-mesh by half a mesh spacing in the x-, y-, z-directions,

respectively. The x-, y-, z-momentum equations are discretized at the nodal

points of the u-, v-, w-meshes, respectively, while the discretized Poisson

equation for pressure is obtained at the nodal points of the P-mesh by central

differencing of the discretized momentum equations at the neighboring points.

The pressure gradient terms and the diffusive terms of the momentum equations

are approximated by central differencing. The use of central differencing to

approximate the convective terms leads to unphysical oscillatory behavior at

relatively low Reynolds numbers and to divergence of the solution as the

Reynolds number is increased. Classical alternatives of upstream differencing

avoid the problems associated with central differencing by introducing

numerical diffusion terms. However, they often suffer from severe inaccuraciesde21 2

due to truncation errors or streamline-to-grid skewness.22 The problems

associated with central differencing and upstream differencin- of the

uconvective terms are avoided by using quadratic upstream interpolation for

convective kinematics (QUICK) to approximate the convective terms. The

original one-dimensional QUICK scheme developed by Leonard 2 3 was extended to

two dimensions by Davis and Moore. A three-dimensional extension of the

scheme is used here.

While the QUICK scheme is used to discretize all the convective terms of

the momentum equations, only the discretization of the term (uv)x of the

0O* y-momentum equation is presented here. Discretization of the rest of the

convective terms may be obtained in a similar manner. At the mesh node

(xi, Yj+k, zk) (see Figure 2) the convective term (uv)x is approximated

by the finite difference expression

ui+,j+kk Vi+k,j+k,k - i-k,j+hk vi-,j+(,ku - u V(32)
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where

j + ,j+ ,k = 1 (u i + ' j k + ui±- uj + l k)

and vi+ks,+kk is an approximation for v at the point (xi+ , Yj+ , Zk). It is

obtained by averaging a truncated Taylor series expansion for v over the cell

side centered at the point (xi+_, yj+k, zk). The Taylor series is taken about

the point (xi+kk, y, z) if ui+ k,j+kk > 0 or about the neighboring point

(xi+k+h, y, z) if ui+ 'j+ ,k < 0. Assuming that ui+t_,J+k,k > 0, set

vyxi+ Y,z) = 1+ + n + )
+ 21 L L+ y / ) v(xi+---, j+YJ' zk) (33)

where

fl = y - y+

=ZZk •

n+ y j+k

The expression for V is obtained by taking the average
Az AY

-i+AY 1= Ay f v(xi+.-,' Yj+h + T
' Zk + C) dn dC

-Az -Ay

-2 -2

and approximating the derivatives by central finite differences. Therefore

V i+k,j+k,k 9v i+k+k,j+k,k + 14 vi+k-kj+k,k

_3v i-k-3/2, J+k,k

+v i-,j-kk + vi±-,J+3/2,k

S+ v ++l (34

For advancing the solution from time tn to time t n + l where t n n ht,

the Poisson equation for pressure

- qn+l qIn

-2pn+ - n+ (35)
i.- + V. v I +(5

At Q k)
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is first solved to determine the pressure distribution that will allow the
n+l

continuity equation to be satisfied at time tn  . In Equation (35)

n+k 3 n 1 n-l

and V indicates the central finite difference approximation of the operator V.

For the continuity equation to be satisfied at time t , it is necessary to

set the first term on the right-hand side of Equation (35) equal to zero. An

efficient method for the direct solution of the discrete Poisson equation is

used. Following the determination of the pressure field, the Adams-

Bashforth scheme is used to calculate the velocity at the new time step.

Therefore,

n+l n (Qn+ + pn+k (36)q ffiq -/ •(6

The finite difference scheme used here is second-order accurate in both space

and time.
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4. RESULTS OF THE SIMULATIONS

The study of impinging jets brings into focus a combination of different

types of flows that are interrelated in a very complicated manner. For

example, an impinging jet flow field is a combination of free jet flows,

vortices in the curved shear layer, stagnation point flow and wall jet flow.

During the operation of VTOL aircraft near the ground, this flow field is

further complicated by the presence of the fountain due to collision between

two wall jets (see Figure 1). Understanding the large-scale motion in such a

geometry is essential to determining the characteristics of the flow field

associated with VTOL aircraft operating near the ground. The approach taken

here involves the simulation of forced impinging jets to study the complex

vortex dynamics that occur when the VTOL aircraft is operating in the vicinity

of the ground plane.

The basic configuration considered in this study is that of an infinite
4

row of jets. In the following computations, the distance between the axes of

neighboring jets is taken to be equal to 3D, where D is the jet diameter. Two

values of H are considered: H = 1.5D and H - 3D, where H is the distance

between the upper and lower horizontal plates. The side boundaries are

assumed to be two vertical planes parallel to the plane of jet axes and at a

distance of 3D on either side of it. Periodic boundary conditions are assumed

in the x-direction. The periodic boundaries are assumed to be the vertical

planes normal to the row of jets and positioned at the mid-distance between

two neighboring jets.

Computations were performed in which a single period in the x-direction

5includes a single jet and two neighboring jets. Symmetry conditions are

applied whenever possible to reduce the cost of computation. The top view of

the computational domain for computing two neighboring jets is shown in Figure

3. A fraction of this domain is required for several of the computations that

follow. Figure 3 will be referred to below to define the different

computational domains used in the calculations.

In the following computations, a basic axisymmetric velocity profile given

by

w I - r W (37)0 r
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is assumed at the jet exit, where rj is the jet exit radius, r is the radial

coordinate, and W is the axial velocity magnitude at the jet exit. In the

following discussion, all velocities are normalized by a reference velocity U,

U - W. The velocity components in the x- and y-directions are assumed to be

zero at the jet exit. The basic steady state solution is perturbed by adding a I
time-dependent perturbation velocity [0, 0, w'(x,y,t)] at the jet exit. In the

following computations, the jet diameter D and the jet axial velocity W (- U)

are specified to be 1.0. A Reynolds number of 1000 is assumed, based on the

jet diameter and the unperturbed exit velocity at the jet axis. The time step

At used in the computations is given by At - 0.3 min (Ax, Ay, Az) where Ax, Ay

and Az are the uniform mesh spacings in the three coordinate directions. The

Cartesian coordinate system is chosen so that xL - yj = 0 in Figure 3, while

z = 0 is the ground plane.

In all the following computations, a steady-state solution is obtained

initially and is used as an initial solution for the simulations in which the

jet is disturbed. The initial solution for the steady-state computations was

that of a flow at rest. The velocity profile given by Equation (37) was

gradually introduced at the jet exit. The velocity was linearly increased in

time from zero to the velocity indicated by Equation (37) within 10 time

steps. The computation was then continued in time until all initial transients

disappear and a steady-state solution is obtained.

To reduce the cost of obtaining the steady-state solutions, they were

obtained initially on a coarse computational mesh. This coarse-mesh solution

is then interpolated onto the fine mesh and used as an initial solution for the

I, fine mesh computation. These computations assume symmetry conditions in both

the x- and y-directions. They are therefore obtained on the computational

domain bounded by the planes x - xL, x W xF, y - yj and y - Y2' which composes

one-eighth of the domain depicted in Figure 3. The solution is then reflected

as many times as necessary to obtain the steady-state solution in the

computational domain of interest.

The computations were performed on the NASA Ames Cray X-MP/48 computer.

So that computer memory capabilities are not exceeded, computational data were

buffered in and out of core using the Solid State Storage Device (SSD), which

functions as a very high-speed disk witl transfer rates of 1000 MB/second.

5-
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Since the present computations are incompressille computations, it was

necessary to keep the pressure array in core. However, all other large arrays

were divided into eight horizontal slabs that were buffered in and out of core.

The present computer code has been optimized for vector operations

wherever possible and performs at a computational speed of 1.45 x 10- cpu

seconds per time step per grid point. The actual computational time for a

simulation depends upon the grid used and the total time period of forcing

being simulated.

4.1 Steady Impinging Jets

Steady-state solutions for the impinging Jets for both a short height case

(H - 1.5D) and a longer height case (H - 3D) were first obtained. For these

steady-state calculations, the planes x - xL, x - xF, and y - yj are assumed

to be planes of symmetry. This reduces the computational time required to

obtain the steady-state flow field. The computational domains for the short

and long height cases were, respectively, l.5Dx3Dxl.5D and l.5Dx3Dx3D. The

computational domain is bounded by the planes x = XL and x F in the

x-direction and by the planes y - yj and y - Y2 in the y-direction (see

Figure 3). A 32x64x32 grid was employed for all the steady-state calculations.

The computations are begun with the fluid in the domain initially at rest.

At time zero, a velocity jet profile [Equation (37)] is introduced at the

circular jet exit plane on the top wall to simulate the incoming jet. The jet

shear layer sheds a vortex ring, often called the starting vortex, that

impinges on the ground plane and then propagates along the surface. The

propagation of this starting vortex ring was discussed in Rizk and Menon.
26

This vortex ring eventually leaves the computational domain. The flow field

reaches a steady-state situation when there are no further changes in the flow

field. Figure 4 shows the three-dimensional view of the total vorticity

magnitude, defined as IWI = -/, i - 1,3, in a view that shows the jet and

the fountain region for the H - 1.5D case. This figure shows the three-

dimensional perspective of the vorticity surface at the level Ic - 1.75, which

implies that all vorticity levels higher than this value are enclosed inside

this surface. Visualization at a lower vorticity level would show more

regions of vorticity but would hide the regions of higher vortical motion that

are of major interest. This figure shows the characteristic shear flow at

steady state. The vorticity surface in the impinging jet shear layer is
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smooth in general, indicating a uniform shear flow that grows as the jet

spreads before impacting on the ground. The vorticity in the fountain is also

smooth, and the recirculation of the flow due to the impact and spreading of

the fountain on the top wall is also visible. There is an indication that

this recirculation of the flow causes the fluid to be entrained into the jet,

thereby contributing to the spreading of the jet. This is a consequence of

the presence of the second jet in the x-direction. The close proximity of the

top wall to the ground causes the fountain's spreading on the top wall to be

quite distinct.

Figure 5a shows the steady-state v-velocity profile in the x - 0 plane,

normal to the plane of jets, as a function of z at various y-locations. In

this figure, and all subsequent figures showing velocity profiles, the

abscissa shows the scale for the velocity. The impinging jet and the fountain

regions are excluded from this figure due to the rapid changes in the flow

4 direction in those regions. This figure shows the wall jet propagating

towards the outflow. The wall jet is strong and narrow in the initial regions

where the wall shear layer thickness is small and the impinging jet shear

layer is accelerating due to the curvature effects. Further downstream, the

wall boundary layer grows and the jet peak velocity decreases as the flow

spreads on the ground and weakens. Some regions of reverse flow are seen

around y - 2.25D, indicating that there is some entrainment from the outflow

region near the top wall. The u-velocity profile in the y - 0 plane, which

coincides with the plane of the jet axes, is shown in Figure 5b as a function

of z at various x-locations. The wall jet on the ground grows towards the

fountain and then slows down as the collision zone is approached. There is a

reverse wall jet on the top wall due to the spreading and recirculation of the

* fluid in the fountain. This reverse shear flow spreads over the top wall and

weakens as the impinging jet region is approached. There is evidence that

some of the fluid in the recirculation flow is entrained into the impinging

jet, thereby modifying the spreading of the jet.

Figure 6a shows the steady-state pressure in the y-z plane at x - 0 as a

function of S, where S is the distance from the jet exit plane (see inset).

The pressure rises to its stagnation value at the impingement point (I) on the

* ground and then decreases towards the outflow (0). Pressure is nearly uniform

as the outflow is approached. The slight increase in the pressure towards the

outflow is probably related to the slowing down of the vortex ring as it
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propagates to the outflow. On the outflow boundary, the pressure is not

uniform but shows a slight decrease as the top wall is approached (W). On the

top wall, the pressure is uniform. The pressure variation in the x-z plane at

0 y - 0 as a function of S (see inset) is shown in Figure 6b. The pressure

decreases from the maximum at the impingement point (I) as the fountain is

approached and then increases in the wall jet collision zone. The rise in

pressure at the fountain axis (F) is lower than the stagnation pressure at the

jet impingement point. The peak pressure in the wall jet collision zone

occurs slightly above the ground, after which it starts to decrease as the

fountain spreads. The pressure then again increases to another local maximum

at the location where the fountain impinges on the top wall (W). This local

maximum is about the same as the peak near the wall jet collision.

The growth of the impinging jet is shown in Figure 7a in terms of the jet

half velocity width, Jxk/D, in the x-z plane at y - 0 as a function of z/D.

This jet width is calculated based on the location at which the velocity is

half the local maximum velocity. The jet width is nearly constant until about

z - 0.5D, where it starts to spread rapidly as the shear layer curves outwards

near the impingement region. The growth of the fountain due to wall jet

collisions is shown in Figure 7b, which indicates a slow spreading of the

fountain as the top wall is approached. This is partly due to the presence of

the jet exit plane close to the ground, resulting in a smaller distance for the

fountain to have for spreading. The calculated fountain width for z < 0.3D

may not be reliable due to the rapid changes in the flow direction in the wall

jet collision zone.

'V Figure 7c shows the variation of the centerline velocity, w /U, as a
c

function of distance from the jet exit plane to the ground, z/D. The velocity

•_ is scaled by the jet-to-ground distance, H/D. The jet is nearly uniform until

about z - O.5H, after which it rapidly slows down as the ground is approached.

As it slows, the jet also spreads outwards causing the observed jet spreading.

Steady-state simulations for the H - 3D case were also performed.

Figure 8a shows the three-dimensional perspective of the vorticity surface for

the impinging jet flow in this case. The vorticity surface is at the same

absolute vorticity level as in Figure 4. Comparison with Figure 4 indicates

that increasing the jet-to-ground distance increases the dissipation and

diffusion of the vorticity and weakens the shear regions in the flow field.
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At the level shown, there is ine 4gnificant vorticity on the top wall, unlike

the H 1 1.5D case, and the reverse flow on the top wall is also indistinct.

Visualization of the vorticity at a lower level would show that there is

vorticity in those regions but at a much lower level. Figure 8b shows the

view of the outflow for the H - 3D case. The steady-state vorticity in the

• shear layer of the jet is smooth, and the shear region in the wall region is

also smooth. The fountain is weaker, however, than for the H - 1.5D case.

This would reduce the pressure increase on the top wall, thereby reducing the

liftoff effect of the fountain. In general, the flow field is similar to the

H - 1.5D case; however, due to the increase in the jet-to-ground distance,

there are only local regions of high vorticity present in the domain.

Figure 9a shows the steady-state velocity vector diagram in the y-z plane

at x - 0. This figure shows the flow field in the incoming jet and in the out-

flow direction. There is some indication of entrainment of the fluid near the

outflow boundary at the top wall. This is possibly due to the finite extent

of the computational domain and the implementation of the outflow boundary

* conditions. Figure 9b shows the velocity vector field in the y-z plane at

J x - IM.D, which is the fountain flow region. The characteristic fanlike

behavior of the fountain as it spreads up and outwards is clearly visible. This

" is due to the collision of two wall jets, which results in the fluid rising into

the fountain and spreading up and out towards the outflow. Figure 10a shows the

velocity vector diagram in the x-z plane at y - 0, and Figure 10b shows the

corresponding velocity field at the x-z plane at y - 1.5D. These views show

the impingement of the jet on the ground and the fountain due to wall jet

collisions. The formation of a recirculatory region on the top wall is

observed in Figure 10b, which shows the x-z plane halfway to the outflow. This

is due to the impact of the fluid in the fountain on the top wall.

. The steady-state v-velocity profiles are shown in Figure lla as a function

of z in the x - 0 plane. The behavior of the wall jet on the ground towards

the outflow is similar to that in the H - 1.5D case. There are more regions of

6 reverse flow on the top wall due to the entrainment near the outflow, as seen

-e in Figure 9a. Figure llb shows the corresponding u-velocity profiles in the y

" - 0 plane. The wall jet on the ground towards the fountain and the reverse jet

e' flow on the top wall are observed. This reverse jet flow is weaker than in the

H 1 1.5D case. It is evident from these figures that the resolution in the
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z-direction for the H - 3D case is very poor, vith the vail region resolved

within two grid points. The only solution to this lack of resolutior. is to

increase the number of points in the z-direction, which would also increase the

computational effort required. However, the coarser resolution simulations did

* reproduce the large-scale motion reasonably well. For this reason, and also

for computational ease, we have restricted ourselves to the coarser mesh in

these simulations.

The variation of pressure in the y-z plane at x - 0 is similar to that in

the H - 1.5D case. The variation of pressure in the x-z plane at y - 0 is

shown in Figure 12a. The pressure increases to its stagnation value at the Jet

impingement point and then decreases in the x-direction. As the fountain axis

is approached, the pressure rises again due to the collision between the wall

jets. The pressure reaches another local maximum at the fountain axis. This

pressure peak is lower than the stagnation value at the jet impingement point.

* The pressure then decreases along the fountain axis but then increases to

another local maximum at the location where the fountain impinges on the top

* wall. However, unlike in the H - 1.5D case, this local peak is much lower than

the peak at the wall jet collision zone. This again shows that increasing the

jet-to-ground distance decreases the liftoff capability of the fountain. These

results also suggest that, in VTOL-type flow fields, there are three stagnation

4. regions. The impingement point is the primary stagnation point, and secondary

.4. stagnation regions occur in the wall jet collision zone and the fountain

impingement zone on the top wall.

The variation of the jet half-velocity width as a function of height, as

* shown in Figure 12b, indicates that the jet starts to spread at around 0.75D

from the jet exit plane, which is about the same location for the H - 1.5D

* c~se. This jet spread is much more than in the short height case due to the

longer distance the jet has to travel before impinging on the ground. The

* spread of the fountain is also large and quite rapid above z - 1.2D, as shown

in Figure 12c. The increase in spreading seen below z - 0.75D is probably not

very reliable, since near the wall jet collision zone the flow changes

% direction rapidly and the width calculations may not be accurate.

These results show the characteristic steady-state flow field obtained due

S to impinging jets. The general flow patterns observed in these calculations

are in agreement with the experimental data. However, in actual VTOXL

* operations near the ground, the exhaust from the engines Is usually highly
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turbulent and unsteady. This causes the jet shear layer to go unstable due to

the growth of the shear layer instability mechanism. The shear layer rolls up

into vortices that undergo a pairing/merging process to form large-scale

coherent structures. The motion of these large-scale structures is the area of

main interest. To simulate the large-scale motion, we have simulated impinging

jets that are forced at a specified frequency. To initialize the flow field

for the forcing studies, we use the steady-state solution shown above as an

initial condition. The results of the forced impinging jet simulations are

described in the following sections.

4.2 Azsy~trically Forced ImptaginM Jets

The study of turbulent shear flow has undergone considerable changes in the

recent past, brought about by the discovery of large, spatially coherent

structures in various types of shear flows. These structures have been shown

to be an intrinsic part of the shear layer growth and its mixing processes. In
27 11

experiments by Brown and Roshko and Crow and Champagne, these large-

scale structures were observed as spatially coherent and predominantly

two-dimensional in the earlier part of the shear layer development. In jet

flows, for example, the shear layer instability plays a pivotal role in the

transition of the initially laminar shear layer to turbulent flow. The shear

layer becomes unstable due to the growth of linear instability waves and rolls

up into axisyinmetric vortex rings that undergo a pairing/merging process,

resulting in a large coherent structure downstream. These structures

eventually break down due to three-dimensional effects into small-scale

turbulent flow. It has been observed that the formation of these large-scale

structures has a predominant preferred frequency called the jet-preferred

* mode. This preferred mode has been shown to fall in the Strouhal number
28(St - fD/U) range of 0.2 to 0.6 (Gutmark and Ho ). This wide variation in

* the jet-preferred mode has been linked to the differences in experimental

facilities and in background turbulence levels. It is generally agreed,

0: however, that this preferred mode is almost independent of the initial shear

* layer thickness. It was also observed that the motion and growth of these

structures are highly sensitive to harmonic forcing. This indicates that a

study of forced jets can provide a detailed understanding of the evolution and

dynamics of large-scale coherent structures In the flow field.
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In this section we present results obtained for the case when the Jet isI

forced axisyetrically. Both single- and two-frequency forcing were

simulated. Essentially, to perturb the incoming jet profile at a specified

*. frequency, a sinusoidal waveform was superimposed on the jet mean velocity

* profile. Thus, the ring vortices that are generated due to forcing were

embedded in the mean flow. The frequency of forcing was chosen to correspond

to a Strouhal number based on the jet diameter of around 0.47 for the single-

frequency forcing. This Strouhal number falls within the so-called jet-

* preferred mode range and is used here as a characteristic forcing situation.

No attempts were made to vary the forcing frequency. For the two-frequency

forcing cases, forcing simultaneously at St - 0.235 and St - 0.47 and at

St - 0.47 and St - 0.94 was investigated. The forcing levels were varied from

10 percent to 20 percent of the mean velocity. Although these are relatively

high forcing levels, they are similar to the experimental study by Didden and

Ho, 0 who used 0.18U forcing levels to study isolated impinging jets.

Furthermore, an advantage of using such high levels of excitation is that the

imposed disturbance suppresses the natural jet instability and the background

small-scale fluctuations so that the response of the jet and the flow field is

controlled by the forcing. Thus we can study the development of the coherent

vortices in the impinging jet flow field.

All simulations were first computed to steady state as discussed in

Section 4.1, and then the disturbance at a prescribed frequency was added to

the jet velocity profile at the jet exit plane. The results presented here are

after approximately 10 to 12 cycles of forcing so that the flow field has

reached a quasi-stationary state. Detailed data were then obtained for one to I
two cycles of forcing. Although a large amount of data has been obtained, only

characteristic results are presented here. To understand the dynamics of the

large-scale coherent motion, the main focus has been to look at the detailed

vorticity patterns in the flow field. The vorticity contour fields provide a

visualization of the motion and structure of the vortex rings that are shed by

the jet during a forcing cycle. The three-dimensional vorticity surface plots

provide a means for studying the stretching, tearing, and breakdown of the

vortex rings in three-dimensional flow fields. Additional information of the

flow field has also been obtained in terms of the velocity fields and pressure

field in the computational domain. These data are presented wherever

appropriate.
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The results presented in this section fall into the following two general

categories:

(1) Impinging jets forced in phase

(2) Impinging jets forced out of phase

For the in-phase forcing studies, a single-jet geometry is modeled. The

periodic boundary condition at the fountain axis forces the wall jets to

collide at the fountain plane, x - xF, in phase. For the out-of-phase

forcing simulations, we use a double-jet configuration. The forcing is imposed

on both jets independently so that the effect of the phase difference between

the forcing of the two jets can be studied and its effect on the fountain

spreading can be evaluated.

The effect of forcing on impinging jets at two different heights above the

ground was studied. However, both the short height (H - 1.5D) and the long

height (H = 3D) jets studied here are located quite close to the impinging

plane. This implies that the simulations performed here are studying the

situation when the forced jet is located in close proximity to the ground

plane, which is characteristic of the initial stages of takeoff or the final

stages of landing of a VTOL aircraft (Kuhn ). In actual VTOL operations, in

the vicinity of the ground the jet-to-ground distance will vary considerably.

For the single jet, since all the forcing studies presented in this section

employ axisymmetric forcing, the planes x - XL, x = xF, and y - y3 are

assumed to be planes of symmetry. The computational domain in this case is

bounded by the planes x - xL and x - xF in the x-direction and by the

planes y - yj and y - Y2 in the y-direction (see Figure 3). A grid of

32x64x32 is used for these single-jet configurations. For the double-jet

configuration for axisymmetric forcing, the planes x - XL, x = xR, and

. y - yj are assumed to be planes of symmetry. The computational domain in

this case is bounded by the planes x - xL and x - xR in the x-direction and

by the planes y - yj and y - Y2 in the y-direction. A grid of 64x64x32 is
eZ

used for the double-jet configuration.
'I

4.2.1 In-Phase Forcing
Sp.

For the in-phase forcing, the velocity perturbation at the jet exit is

defined by

w'(x,y,t) = -A wo(r) sin(2yrt/tp)
p -
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where r is the radial coordinate relative to the jet axis and A is the

amplitude of the forcing, which is varied between 10 and 20 percent of the meanI
flow. Also, w (r) is the unperturbed mean jet profile defined by Equation

0

(37). Two different heights of the jet exit location with respect to the
* ground were studied in these simulations. Due to the enormous amount of data

obtained, to simplify the presentation of the results we discuss each class of I
simulation separately. Wherever possible the plots presented for these

simulations are shown, for example, using identical contour intervals to allow

ease in comparison. We first discuss the results of the simulation of the

forced impinging jet for the jet-to-ground distance of 1.5D. The simulation ofI
the case with a jet-ta-ground distance of 3D is then discussed.

Short Height Case (H - 1.50)
Figures 13a through 13c show the x-vorticity contours in the y-z plane at

the centerline (x -0) plane for a cycle of forcing at a Strouhal number of

0.47. This plane shows the outflow direction, and the figures are shown one

half cycle apart. As can be seen, during a forcing cycle, a large vortex ring

is shed by the jet. In these calculations, D -1 and U - 1, and thus

f - St - 0.47. The phase speed of this shed vortex ring in the jet before

impingement, based on the forcing frequency, is approximately 0.65U. which is

consistent with experimental observations in both the impinging jet and the

free jet. Didden and Ho 10measured a value of 0.61U for the phase speed of

the vortex ring in an isolated impinging jet. The shed vortex is convected -

downstream towards the ground plane and is stretched as the impingement region

is approached. Near the impingement region, the jet shear layer deflects

outwards and is under a stabilizing curvature effect. Upon impinging the wall,

the vortex ring shape starts to distort as it continues to propagate along the

ground wall. Unlike in an isolated impinging jet where the vortex propagation

on the ground plane is uniform in all directions, in the present case the

presence of the fountain modifies the vortex dynamics considerably. In these

calculations, the fountain plane is located at 1.5D and the outflow is located

at 3D from the jet centerline (see Figure 3 for the geometry). Thus, the flow

field is not the same in these two directions. The ring vortex reaches the

fountain region and collides with the other wall jet before it reaches the

outflow. Therefore, although the initial propagation on the ground plane is

uniform in all directions, due to the fountain effect, the vortex ring starts
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to twist by around y/D - 1.5. As the impingement region is approached, the

centerline velocity of the jet goes to zero as the flow approaches the

stagnation point. However, this does not seem to affect the propagation speed

of the vortex ring in the jet significantly because of the balance between the

deceleration due to the plate and the acceleration due to the shear layer

curvature. This is again in agreement with the experimental obeervations. On

the wall, the vortex ring propagates towards the outflow at a convective speed

that is much slower than the value of 0.65U in the impinging jet. The value
d obtained in these calculations indicates a phase speed of around 0.2U to 0.3U

in the outflow direction. This is slower than the value measured (0.45U) for

the isolated wall jet flow in the experiments.1 0 This slower speed is due to

the presence of the fountain, which entrains the vortex ring into it and

thereby slows down the convective speed of the ring in the outflow direction.

As the vortex ring propagates along the wall, it induces a secondary

vorticity on the ground as can be seen in the figures. This region of

secondary vorticity also moves downstream with the primary vortex and evolves

into a ring vortex of opposite vorticity. During propagation on the ground,

the primary vortex ring diameter increases and the vorticity in the ring

increases. However, further downstream the rings start to break down due to

- three-dimensional effects and they start to lose their coherence. This

breakdown was also observed in the experiments and was attributed to possible

growth of azimuthal instability. However, the present simulation imposes

symmetry on the flow field, so only symmetric instability waves can grow.

Thus, it is possible that the observed breakdown may be caused by the

excitation of higher axisymmetric modes. The observed breakdown is possibly

due to a combination of the effects of the vortex diffusion, the liftoff of the

vortex ring into the fountain, and the growth of axisymmetric instability.

The appearance of the secondary vorticity on the ground is observed around

y/D - 0.6. Although the presence of secondary vorticity on the wall boundary

-" layer does not imply separation, separation is always accompanied by secondary

vorticity. The appearance of the secondary vorticity is in agreement with the

experiments of Didden and Ho,10 and the general behavior observed in their

experiments was also reproduced in these calculations. For example, as the

primary vortex ring propagates downstream, the secondary vortex region also

moves with it, and the counterrotatIng vortex rings show an indication of lift-

ing off the ground as the outflow boundary is reached. This can be seen more
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clearly in Figure 13d, which shows the wall region in more detail corresponding

to Figure 13a, and in Figure 13e, which shows the x-vorticity in the y-z plane

at x - 0.51D which is just outside the impinging jet region. The observed

liftoff phenomenon is due to their mutually induced velocity fields. This
:9" liftoff of the counterrotating vortex rings was also observed in the

experiments. However, the secondary vortex lifting off the ground and wrapping

around the primary vortex was not fully observed perhaps due to the proximity

of the outflow boundary.

In the direction of the fountain axis, the primary vortices reach the

collision axis before the vortex reaches the outflow and starts to climb up the

fountain axis. Figures 14a through 14c show the y-vorticity component in the

x-z plane at y = 0 for a forcing cycle corresponding to Figure 13. The vortex

in the fountain after reaching the top wall continues to move along the upper

wall until it reaches the impinging jet region, where a part of it is entrained

into the primary jet. This contributes to the spread of the jet by entraining

fluid into the jet. The presence of secondary vorticity can be seen on both

the top and ground walls in these figures. However, the secondary region on

the ground plane is relatively steady compared to the secondary regions

observed in the outflow direction. This is due to the collision of the wall

jet with an equal and opposite wall jet. Just outside the jet region, the

vorticity pattern shown in Figure 14d shows that the structures in the fountain

are still coherent, but by y/D = 1.5 (Figure 14e) the fountain has broken down

to much weaker structures. Therefore, the fountain maintains its identity only

in the region y/D < 1.5. Hence, the extra lift effect of the fountain probably

will come from the increase in pressure in a limited region on the top wall.

In Figures 15a and 15b we present, one-half cycle apart, the z-vorticity
contours in the x-y plane just above the ground plane. These z-vorticity

contours show the vorticity due to motion in the x-y plane. This is a top

view of the vortex pattern on the ground. Figure 15a shows the curved vortex
rings on the ground, and comparison with Figures 13 and 14 indicates that the

*0 observed counterrotating pairs correspond to the primary-secondary vortex ring

pairs. As the fountain axis is approached, the coherency of the z-vorticity

is lost. At an x-y plane ID above the ground, the z-vorticity contours are

quite different, as shown in Figures 15c and 15d. The vortex rings are more

skewed towards the outflow in this plane, and regions of small-scale

structures are observed. The flow field region in the fountain axis is made
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of isolated structures each of which corresponds to a vortex ring that has

lifted off the ground and become entrained into the fountain. On the top

wall, the z-vorticity contours (not shown here) indicate breakdown into

small-scale structures.

To visualize the flow field in a more realistic manner, we show in

Figure 16a the three-dimensional vorticity field. In this figure we have

plotted the total vorticity magnitude as defined before and view it in a

direction that shows the outflow region. Both the primary and the secondary

vorticity are shown as surfaces of the specified vorticity level, which

indicates that all vorticity higher than that shown is inside the surface. To

show the liftoff of the vortex rings into the fountain more clearly, we show

in Figure 16b the same view as in Figure 16a but at a much higher vorticity

level. Only structures containing vorticity higher than the level shown are

visible in this figure. The liftoff of the primary vortex ring into the

fountain is clearly shown. Although the adjacent counterrotating secondary

vortex ring attempts to follow the primary ring up the fountain, it does not

completely achieve this and remains attached on the ground. Figure 16c shows

the total vorticity surface from a view that shows the fountain region. The

liftoff of the primary vortex ring into the fountain and the secondary vortex

ring on the ground plane can be seen. Using these three-dimensional vorticity

field surfaces, we can now understand Figures 13 and 14 more clearly. It can

V be immediately seen that the primary vortex ring on the wall moves on the wall

in the outflow direction but is lifted off the plate as the ring climbs in the

fountain axis. As this happens, the vortex ring is stretched and twisted, and

further downstream it breaks down due to three-dimensional effects. The

.V, secondary vortex ring generated by the primary vorticity on the wall, however,

* does not follow the primary ring up the fountain and seems to lose coherence

as the primary ring lifts off the ground.

* -. Additional data in terms of the velocity vector and pressure gradient

fields were also obtained in these calculations. Figure 17a shows the

instantaneous velocity vector field at x - 0 in the y-z plane corresponding to

Figure 13a. The vector field indicates that regions of recirculating flow are

associated with each of the vortex rings and that the fluid is being entrained

into the wall jet. This has also been observed in the experiments. Figure i7b

shows the pressure gradient vector field in the vicinity of the impingement

point. In this figure, the vector length indicates the magnitude of the
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pressure gradient, and the direction of the vector indicates the region of

high pressure. The pressure reaches a maximum at the impingement point. The

regions of entrainment and recirculation are shown more clearly in Figure 17c,

which shows the velocity vector field near the wall. Figures 17d and 17e show,

respectively, the corresponding vorticity contour and pressure gradient fields.

Comparison of Figures 17c and 17d indicates that the region of vortical motion

is not the same as the region of rotating fluid. This is important because in

interpreting the velocity vector field to identify vortices is not correct and

would produce erroneous conclusions. In experimental visualization, particle

tracing coupled with time-lapse photography is usually employed to obtain the

instantaneous pathlines. The velocity vector field can be determined from

these data. However, to determine the vorticity, the gradient of the velocity

vector field must be calculated from the vector field. It is quite difficult

to observe the vortical motion directly in experiments. To visualize vortical

motion it is necessary to look at the vorticity contours. The velocity vector

field, however, provides an understanding of the flow motion caused by the

coherent vortices and shows entrainment of the potential flow region into the

wall jet very clearly. Figure 17e indicates that the region of adverse

pressure gradient is associated with the formation of secondary vorticity.

Therefore, it seems from these calculations that the contention by Didden and
.5. 10Ho, that the formation of secondary vorticity is due to the unsteady

separation of the wall boundary layer induced by an adverse pressure gradient,

seems justified. The adverse pressure gradient is associated with each of the

secondary vortex rings shown in these figures and indicates low-pressure zones

in the recirculation regions.

Figure 18a shows the velocity vector field in the x-z plane at y 0, which

is the plane at the jet axis. The impinging jet and the fountain regions are

visible in these figures. Comparison with Figure 14a, which shows the

corresponding vorticity contours, again indicates the inability of the velocity

vector field to resolve the vortical motion. The corresponding pressure
gradient field is shown in Figure l8b. This figure again shows the

relationship between an adverse pressure gradient and the formation of

secondary vorticity. Figure 18c shows the velocity vector field in the x-z

plane at y - 1.5D, which is halfway to the outflow. Figure 14e shows the

corresponding vorticity contour field. Comparison again shows the different
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types of flow fields observed by viewing the velocity field and the vorticity

contour field. The velocity vector field indicates a large region of recircu-
lation caused by the impingement and the spreading of the fountain on the top

wall.

* - Additional data of the flow field were also obtained in terms of the

velocity profiles on the ground plane. Detailed velocity field data were

obtained. Here we present some characteristic results. Figures 19a and 19b

show at x - 0 and x - 0.51D, respectively, the instantaneous v-velocity

profile between the two walls as a function of y-locations. The wall jet is

quite strong just after impingement but then slows down as the outflow is
approached. On the ground plane, a small region of reverse f low is seen

throughout the forcing cycle. This implies that the wall boundary layer may
have undergone seperation at this location. These velocity profiles also show

that there are local regions of reverse flow just outside the wall region.
* This is due to the recirculation and entrainment of the fluid as seen in

Figure 17. Figures 19c and 19d show at x -0 and x - 0.51D, respectively, the
velocity profiles for a period of forcing plotted one-half cycle apart. These

profiles are plotted at y - 1.5D, which is halfway to the outflow. The wall
boundary layer thickness does not vary significantly with forcing at this

location. Regions of reverse flow on the top wall are observed, which is

indicative of entrainment from the outflow region.

Figures 20a and 20b show at y - 0 and y 0 .51D, respectively, the

u-velocity profiles as a function of x-locations. The region of the impinging

jet and the fountain was excluded from these figures. The wall jet speeds up

-V.'..first and then starts to slow as the fountain is approached. The reverse wall
..6 jet on the top wall due to the spread of the fountain is clearly visible.

* Figures 20c and 20d show at y - 0 and y - 0.51D, respectively, the u-velocity

profiles for the forcing cycle. These profiles are at x - 0.75D, which is
Vs halfway to the fountain. Forcing causes the wall jet on the ground to acceler-

ate and decelerate, but the wall jet on the top wall is affected only weakly.

The flow reverses above the wall jet on the ground as seen in Figure 20c due

to recirculation from the fountain. However, towards the outflow, the

recirculation effect is weaker and, hence, the reverse flow region is observed

only near the top wall.

Figures 21a and 21b show, respectively, the jet width at the x 0 plane

and the y - 0 plane. These figures show the width of the impinging jet viewed
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in the outflow and in the fountain directions. There is some ambiguity near
the ground plane where the shear layer is highly clirved and the jet spreads

rapidly. Therefore, the jet width calculated for z <~ 0.2D may be

meaningless and should be disregarded. In any case, these figures show that

the jet grows with the shedding of the vortex ring and shrinks in the region
* where there are no vortices present. This variation is more observable in the

outflow direction than in the direction of the fountain. The jet spreading is

limited in the x-z plane (Figure 21b), which may be due to the effect of

recirculation from the spread of the fountain on the top wall as seen in the

earlier figures. The recirculation results in the fluid getting entrained

into the jet region resulting in a more uniform spread of the jet in this

plane. This entrainment may be the reason why the jet spread at the beginning

and the end of a forcing cycle does not repeat itself. The pattern of

alternating increase and decrease of the jet width with the passage of a large

vortex ring is also observed in the fountain as shown in Figure 21c. Again,

in this figure, the fountain width near the wall jet collision zone

(z < 0.2D) is unreliable. The variation of the centerline velocity for a

forcing cycle is shown in Figure 21d. The effect of forcing is predominantly

strong in a region (z > 0.25H) above the ground and is weak near the

impingement region. This is due to the wall acting like a filter and damping

out the disturbances.

In the above set of figures we have presented in detail the results of the

simulation of the forced impinging jet for a jet-to-ground distance of 1.5D.

4. This extensive set of data was shown to indicate the details of the flow field

- that was obtained. The result of this simulation shows remarkable agreement

with the experiments of Didden and Ho and reproduces many of the experimentally

observed features. The formation of secondary vortex rings due to the impinge-

ment of the primary vortex is observed, along with the downstream propagation

of the counterrotating vortex ring pair. The formation of the secondary region
on the ground plane seems to be associated with the unsteady separation of the

ri wall boundary layer just downstream of the primary vortex ring. There is

evidence that this is caused by the adverse pressure gradient downstream of

the core of the primary vortex ring. This result agrees with the experimental

observations of Didden and Ho. The convective speed of the vortex ring in the

jet is about the same as that observed in the experiments. However, the

4. convective speed in the wall jet is slower than the experimental value, which
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is due to the formation of the fountain in these calculations. Due to the

collision and the formation of the fountain, the vortex rings do not propagate

outwards uniformly in all directions but are skewed and lift off the ground

NO plane as they are entrained into the fountain. This results in the vortex
rings being twisted and eventually breaking down into isolated small-scale

structures. There is evidence of entrainment into the wall jet caused by the

propagation of the vortex rings.

We have presented a detailed data analysis of this simulation to indicate

the characteristic flow field dynamics associated with forcing of impinging

jets. In the following, we present only characteristic results obtained with

two-frequency forcing. In the experiments with free jets, it was observed

that the large-scale structure formed at the so-called jet-preferred frequency

is usually the end product and does not undergo any further pairing. No

experimental data are available for the corresponding impinging jet situation.

* Therefore, we have studied numerically the effect of forcing at two frequencies

that are both in the jet-preferred frequency range. Some characteristic results

of these simulations are presented in the following sections. The general

conclusions discussed above are still valid for the rest of the simulations.

We performed simulations in which two frequencies of forcing were imposed

on the jet profile. For this case we forced the jet simultaneously at Strouhal

numbers of 0.47 and 0.94. A forcing level of 0.lU was used for both the

frequencies. Figure 22a shows the three-dimensional perspective of the

absolute total vorticity at the same level and orientation as in Figure 16a.

The jet shear layer does not show any clear indication of the vortical

structures, and the primary vortex rings on the ground show two kinds of

structures. Merged vortex rings and isolated rings can be seen in this

* figure. There is an indication of pairing of the vortex rings near the

outflow, which is not completed since the rings are lifted off into the

fountain. Figure 22b shows the view of the fountain for this forcing case.
This figure indicates the liftoff and merging of the primary vortex rings in

the fountain. No pairing is observed in the impinging jet itself.

With these three-dimensional views in mind, we now look at the x-vorticity

contours in Figures 23a through 23c for a period corresponding to a Strouhal

number of 0.47. The figures are half a cycle apart, which in this case is the

period of the second forcing frequency. Figure 23a corresponds to the view

r shown in Figure 22. These figures show that the primary vortices that are
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shed aro stretched in the jet shear layer but becomes more coherent before

impingement. On the ground, complex vortex merging process is observed unlike

the single frequency forcing where the shed axisymmetric rings were all

*" isolated. In Figures 23b and 23c we see that the smaller vortex C begins a

t aerging event with vortex D near the outflow, and vortex B is left on its own. b

From the periodic behavior it is evident that vortex B will probably pair in

the next forcing cycle with vortex A, the vortex that is following it. It

also appears that the effect of multiple forcing frequencies delays the

formation of the secondary vortex rings on the ground and the liftoff of the

counterrotational pair is not observed until around y - 2.5D. The y-vorticity

contours in the x-z plane at V - 0, shown in Figure 24, show the vortical

motion in the fountain. No major differences are observed between the single-

and double-frequency forcing studies in this plane except that a larger vortex

ring climbs up the fountain axis for the latter case and the structure

entrained into the impinging jet due to recirculation is also larger. This

* may, of course, cause an increase in the spread of the impinging jet.

Long Height Case (H - 3D)

The above calculations of the forced impinging jet were for the jet

location at H - 1.5D. Similar forcing studies were repeated for the H - 3D

case. For these calculations, the same number of grid points was used in the

z-direction. Therefore, there was a reduction in resolution in the z-direction

for the H - 3D case. Although it was possible to double the grid points in

the z-direction, this would have increased the computational time considerably.

The calculations using 32 grid points provide only a limited resolution of

flow in the wall boundary layer but in general resolves the large-scale motion

in the flow field.

Figure 25a shows the three-dimensional view of the total vorticity surface

at a level Iwi - 1.95, which is the same level as in Figure 16a. The forcing

at St - 0.47 using a level of 0.2U causes in the shedding of a large coherent

vortex ring. This ring impinges on the plate and propagates in a manner

similar to the H - 1.5D case. However, at the level shown, the vorticity is

less pronounced and the spacing between the vortex rings on the ground is

larger than in the short height case. This is expected because of the larger

distance the vortex ring has to travel before impinging on the plate. Upon

impingment, these vortex rings propagate on the wall towards the outflow and
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are lifted off the ground and carried into the fountain. There is a secondary %

vorticity region on the ground, but it is uot distinct until near the outflow

where it rolls into a counterrotating structure and shows an indication of

lifting off. Due to the increase in the jet-to-ground distance, the vorticity

on the top wall is weaker and does not show up on this figure. This indicates

a much weaker effect of the fountain as compared to the short height case.

Figure 25b shows the view of the fountain region. The vortex rings in the

fountain are much smaller and less coherent than in the short height case.

Figures 26a and 26b show the x-vorticity contours half a cycle apart for

this forcing case. The large vortex shed by the jet is clearly seen, and the

contours are plotted at the same interval to correspond to Figures 13 and 14

for the short height case. The vortex ring shed by the jet is much larger

than in the short height case. The formation of the secondary vorticity on

the ground plane is not observed until around y - 1.6D. The appearance of

secondary vorticity around y = 1.6D for this case seems to agree with Didden

and Ho's observation of a distance of r/D = 1.6. However, this delay in the
appearance of the secondary vorticity could be attributed to a lack in grid

resolution in the wall region. As the primary vortex ring climbs up into the

fountain, the vortex ring in the outflow region starts to lift off the ground

plane, and the secondary region also lifts off. In the fountain axis, the

flow pattern is quite similar to the short height case except that the vortex

has to climb a longer distance, which causes it to diffuse and lose coherence.

Figures 27a through 27c show the y-vorticity contours in the x-z plane at y - 0

half a cycle apart. The characteristic pattern described above is clearly

observed. The entrainment into the jet due to recirculation on the top wall

may be causing the increase in the jet spread more than in the H - 1.5D.

Figures 27d and 27e show the y-vorticity contours in the y - 1.5D plane which

is just outside the jet region and halfway to the outflow. The fountain again

loses its identity beyond y - 1.5D.

The variation of the v-velocity in the y-z plane at x = 0 for the forcing

cycle is shown in Figure 28a halfway to the outflow (y 1 1.5D). No major

effect is observed except near the wall jet region. There is reverse flow on

the top wall near the outflow possibly due to local entrainment. Figure 28b

shows the corresponding u-velocity variation for the forcing cycle in the x-z

plane halfway to the fountain (x - 0.75D). The wall jet regions on the bottom

and the top wall are not significantly affected, but the flow in the middle
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shows local reverse flow. The sinusoidal variation in the velocity profile is

caused by the mLion of the vortex ring. Figure 28c shows the variation of

the jet width for the forcing cycle indicating the spreading of the jet with

A the passage of the vortex ring. The forcing effect is more pronounced in the

fountain as can be seen in Figure 28d, which shows the variation of fountain

width as a function of height above ground.

Simulations with two frequencies at St - 0.47 and 0.94 imposed at the jet

exit planes similar to the short height case were also carried out. Figure 29

shows the three-dimensional vorticity surface at the same level as in the

previous cases. The basic pattern of the primary vortex structures on the

ground right after impingement is similar to the short height case. The

vortex ring becomes more coherent further downstream and is lifted into the

fountain. However, unlike the short height case, the ring structure stays on

the ground as it approaches the outflow. The formation of a secondary vortex

tube occurs as the primary vortex ring moves downstream. Breakdown of the

vortex ring near the outflow and in the fountain axis is also observed. The

vorticity surface at a lower vorticity level shows that there are other weaker

J. vortical structures in the flow field that are the remnants of the vortices

shed by the jet.

To understand the effect of the second frequency on the vortex dynamics,

we repeated the previous case with excitation at frequencies corresponding to

Strouhal numbers of 0.47 and 0.235. In this case, the second frequency is the

subharmonic of the primary forcing frequency. A forcing level of 0.lU is used

for both the frequencies. The computations were carried out from identical

initial conditions as for the case shown in Figure 29. Figure 30 shows the

three-dimensional vorticity field after the same elapsed time as in Figure 29.

* Comparison of these two figures indicates similar flow features on the ground

* plane. However, the vortex structure in the impinging jet is not as distinct

as in the previous case. This is possibly due to the effect of the subharmonic

in the forcing. However, there was again no real indication of any pairing in

* the jet. This seems to indicate that in impinging jets the presence of two

frequencies in the jet-preferred range does not produce any enhancement of the

pairing process. of course, the effect of jet-to-ground distance is an

important variable that can possibly cause the observed effect. Simulations

at various jet heights will have to performed to understand the effect of

forcing at multiple frequencies in the preferred mode range.
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In Figures 31a through 31c we present the x-vorticlty in the y-z plane at

" 0 for the case shown in Figure 30. The appearance of the secondary

structure is delayed until y - 1.6D, but near the outflow as the primary

structure starts to pair and lift off the secondary region again becomes quite

distinct and coherent. Pairing is completed between the two structures near

the outflow in Figure 31a as shown in Figure 31b. The vortex ring immediately

behind these two rings attempts to pair with the previously paired structure

near the outflow. However, this process is not completed before the paired

structure lifts off and weakens due to diffusion and vortex stretching.

*The phase speed of the vortex ring in the outflow direction is around 0.2U.

This is again slower than the phase speed observed in isolated impinging jets.

Although it is not clearly visible in these figures, a closer view

indicates that there are actually two vortex cores in the structure seen at the

impinging region in Figure 31c. This can be seen more clearly in Figure 31d,

which shows the vorticity at x - 0.51D which is just outside the jet shear

layer. This may indicate that the effect of two-frequency forcing in the

impinging jet is to cause a pairing/merging process to occur while impinging

on the ground. The pairing observed near the outflow is probably due to

higher axisymmetric modes generated in the flow field. Further comparison of

Figures 31c and 31d indicates that although the pairing has been completed at

x - 0, it is still incomplete at x: - 0-5D. Figure 32a shows the y-vorticity

in the y - 0 plane showing the fountain region at the end of the cycle. Close

examination of the vorticity indicates that there are two vortex cores in the

structure impinging on the ground. Figures 32b and 32c show the y-vorticity

-." in the y - 0.5D and y - 1.5D planes, respectively. The vortex pattern in the

fountain is still distinct at y - 1.5D and is more complicated with multiple

cores.

To determine whether the forcing level had anything to do with the dynamics

of vortex cores in the impinging jet, we repeated the previous calculation

with 20 percent forcing levels. Figure 33a shows the three-dimensional

vorticity at the same level as in Figures 29 and 30. At this level of

forcing, the structure in the impinging jet is more distinct, as is expected.

The vortex ring on the ground plane is also more distinct. The vorticity

pattern two cycles later in time is shown in Figure 33b. The primary vortex

ring in the jet is still the same. There is no vortex ring impinging on the
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plate at this instant, and therefore there is a region where there are no

vortex rings present. A c-aplicated pairing phenomenon is observed in the

outflow region, and there is an indication of breakdown of the vortex rings

into isolated vortical tubes. Comparison with the simulation at the lower

forcing level indicates that similar vortical structures are present but have

lower vorticity in the cores of the structure.

Figure 34a shows the x-vorticity contours in the y-z plane at x - 0

corresponding to Figure 33b. The liftoff of the counterrotating vortex rings

- is observed around y - 2D. The appearance of the secondary vorticity region

is delayed until the primary vortex core starts to lift off the ground. The

pairing/merging between the three vortex rings in Figure 33b is seen in this

-figure. However, in a y-z plane at x - 0.51D, the x-vorticity contours shown

-" in Figure 34b indicates that the vortex rings are still independently coherent.

This indicates that the pairing between large vortex rings on the ground plane

may be more of a local phenomenon than a global one in these impinging jet

flows. In these figures, no multiple core in the impinging vortex rings is

• seen. However, Figure 35a, which shows the y-vorticity contours in the x-z

plane at y - 0 corresponding to Figure 34a, indicates the presence of multiple

vortex cores in the impinging jet region. The y-vorticity contours in the x-z

plane at y - 1.5D half a cycle apart are shown in Figures 35b and 35c. The

merging of different vortex rings is occurring, which results in spreading of

the shear flow region in the fountain. This in turn causes the fountain width

to increase.

To determine whether the structures observed on the ground maintain their

coherence in the spanwise direction during propagation, we looked at the x-

and y-vorticity contours in the x-y planes. Figures 36 a and 36b show the

x-vorticity contours in the x-y plane at z - O.14D and z - O.8D,

* respectively. Figures 37a and 37b show the corresponding y-vorticity contours

in the same two z-locations. The spanwise coherence of the primary and

* secondary vortex rings propagating towards the outflow is evident in Figure

36a almost to the fountain axis. Near the outflow, the structures lose their

*: coherence. The lack of coherence of the x-vorticity near the fountain is due

* to the change of flow direction causing the vorticity to shift to the

y-component. Figure 37 shows that the coherence of the y-vorticity in the

fountain is distinct more at z - 0.8D than near the ground.
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The effect of forcing on the spread of the jet is shown in Figure 3 8a.

This figure shows that the rapid sinusoidal variation observed it. the single-

frequency forcing case is absent when two frequencies are imposed on the jet.

This figure shows the jet width in the y - 0 plane. The corresponding jet

width in the x - 0 plane is shown in Figure 38b. Evidently the jet spread is

not the same in the two directions. This is due to the presence of the

fountain, which modifies the jet spread in the x-z plane. The jet width

variation actually shows a pinching effect due to the passage of the vortex.

Similar effects are observed in the spread of the fountain in the x-z plane at

y - 0 as shown in Figure 38c. Comparison of Figures 38b and 38 c, which

presents the jet width and the fountain width in the same x-z plane, shows

that there is an in-phase variation near the ground but above it, the fountain

shows more oscillatory motion. This is due to the presence of more vortices

in the fountain.

* It was mentioned in the preceding discussion that the formation of the

counterrotating vortex rings is observed in the flow on the ground. It was

also shown using the vorticity contour plots that this primary secondary

vortex pair rolls downstream and shows signs of lifting off the ground due to

the mutually induced velocity field. This liftoff phenomenon is similar to

the experimental observation, and it is interesting to see if this fact can be

further verified. To do this we need to look at the variation of the

z-component of the velocity as a function of height. Figures 39a and 39b show,

respectively, the w-velocity profile in the y-z plane at x - 0 and x - 0.5D.

The profiles are plotted from the jet centerline (y - 0) to the outflow

(y = 3D). Figures 39c and 39d show for comparison purposes the corresponding

v-velocity profiles at the same locations. Figures 39a and 39b both show a

* negative w-velocity in the jet region. No positive w-velocity (indicating

liftoff from the ground) is seen until around y = 2.25D, when significant

positive w-velocity is observed. This corresponds to the liftoff observed in

the vorticity contour figures. The variation of the w-velocity in the x-z

plane at y - 0 and y - 0.5D in the fountain showed no significant lift-off

from the ground until the fountain axis is approached. In the fountain there

is mostly an upwash, and therefore there was significant positive w-velocity.

It seems from this calculation that the primary-secondary vortex ring pairs do

indeed lift off the ground as they propagate to the outflow. This is

consistent with the experimental observation.
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*These calculations indicate that the H 3D flow field is different from

the H - 1.5D case in many ways. The vortex rings are much larger and the jet

and fountain spreads more than in the short height case. However, the general

dynamics of the vortex rings are similar. The liftoff of the vortex ring into

the fountain is again observed. However, the vorticity diffuses more for the

longer height and, therefore, the vortex structures lose their coherence more

rapidly. The appearance of the secondary vorticity region on the wall seems to

be delayed until around y - 1.6D, unlike in the H - 1.5D case, where the

secondary region was observed much earlier. Although this is in agreement with S

experimental data, the lack of grid resolution in the wall region may be con-

tributing to this observance. Increased resolution in the vertical direction

should clarify the validity of the observed features in the wall region.

The effect of forcing at two frequencies in the jet-preferred mode range

was also investigated. No significant effects were observed in the impinging

jet region. This seems to agree with the free jet studies, which indicates

that the coherent structure formed at the jet-preferred frequency is the

* terminal structure of the shear layer pairing process and does not undergo any

further pairing. There are more complicated effects near the outflow as the

vortex rings start to show a complex pairing/merging process, possibly due to

the excitation of higher axisymmetric modes. The liftoff of the primary

secondary vortex pair during propagation tr, the outflow is also observed in

almost all the simulations performed here. This agrees with the experimental

visualization of impinging jets.

4.2.2 Out-of-Phase Forcing

To investigate the dynamics of large-scale motion in the fountain formed by

the collision of two wall jets, we have simulated two jets impinging on the

ground. This is one step further towards the more realistic flow fields

associated with VTOL aircraft. In actual flight configurations, the two jets

correspond to the exhaust of the engines. There is no reason to assume that

the engine exhaust will be in phase. Therefore, the effect of a phase

difference between the large vortex rings shed by each jet can possibly effect

the spread and stability of the fountain and hence contribute to the liftoff

caused by the fountain. In the previous section, we simulated the computa-

tional domain of a single impinging jet, which assumed by virtue of the
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periodic hourdary condition that the jets in an infinite array in the

x-direction are forced in phase. In this section, we discuss the results of

the simulations when the two jets are forced out of phase. Periodic boundary

conditions are still applied at the boundaries in the x-direction. Thus, an

infinite array of jets in the x-direction now consists of sets of two jets

forced out of phase. Axisymmetric forcing of the two jets is again studied in

this section. In this case the flow field is symmetric about the plane y - 0

and, therefore, only half the domain needs to be modeled.

To initialize the flow, the steady-state flow field obtained in the quarter

plane is reflected about the plane x - x This results in a symmetric flow

field as a starting solution. To study the effect of phase difference, the

two jets are forced independently. The effect of phase difference between the

two jets of 7/2 and 7 were studied for both of the height cases. The jet

exit velocity profiles were perturbed at 10 percent forcing levels at the same

frequency corresponding to a Strouhal number of 0.47. No attempts to force

the two jets at different frequencies were carried out due to lack of time.

However, such simulations could easily be carried out and will be of interest

and must be considered to understand the complex vortex dynamics in the

fountain. Detailed data of the flow field were obtained as for the single jet

simulations. However, we present only characteristic results that show the

influence of different phase effects.

For these out-of-phase forcing simulations, the velocity perturbations at

the jet exit are defined by

wL1 (x,y,t) -- A wo(rL) sin (2nt/t )
SR9 (x,y,t) - - A wo(rR) sia (2lrt/t p

where wLf and w 'are the velocity perturbations experienced by the jets
L R

located at stations x - xL and x - xR, respectively. Also, rL and rR are the

radial coordinates relative to the left and right jet axes, respectively, and

. is the phase angle difference between the two jets.

Figure 40a and 40b show the three-dimensional vorticity surface at two

different levels and views. These figures correspond to the H 1.5D case and

show the characteristic flow field associated with forced impinging double

jets. The large vortex rings that are shed by the forced jets roll along the
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ground towards the outflow and are lifted into the fountain region. The large

structure observed near the outflow closer to the top wall is again similar to

the structure seen in the single-jet case. This structure is seen only in the

H - 1.5D case and may be a consequence of entrainment from the outflow boundary

near the top wall. There are secondary vortex rings formed just ahead of the

primary vortex rings on the ground. The liftoff of the vortex rings into the

fountain can be observed. Although in this simulation the two impinging jets

were forced at a phase difference of rr, there was no profound effect on the

fountain development. The vortex rings from the jets reach the wall jet

collision zone at different times, essentially phase lagging/leading each

other. The centerline of the fountain is no longer steady due to the

N asymmetric orientation of the vortex rings in the fountain. Due to the close

proximity of the two walls to each other, the effect of varying the phase of

one jet with respect to the other did not result in any major changes as

* compared to the in-phase forcing studies shown in the previous section. The

* effects were more pronounced for the H -3D case, and therefore we concentrate

* on the results obtained for that height case.

Figure 41a shows the three-dimensional perspective of the vorticity

surface at the same level as in Figure 40a but for the H = 3D case. This view

shows the outflow direction and the characteristic pattern due to the

propagation of the vortex rings on the ground and the liftoff of the vortex

rings into the fountain. The breakdown of the vortex rings due to liftoff can

also be seen. In the outflow direction, no major changes were observed. Due

to the forcing of the jets at a phase difference of IT, the vortex rings from

each jet on the ground plane are offset from each other. Figure 41b shows the

view of the fountain for this simulation. The offset of the vortex rings in

* the fountain from the two jets is clearly apparent. The offset is almost half

the distance between the vortex rings in the fountain. This in effect results

in the vortex rings from each jet to mesh together in a uniform manner. When

the vortex rings are in phase, they form discrete pairs, as was observed in

* the in-phase forcing study described in the previous section. The perspective

view of the flow field at lower vorticity levels did show the characteristic

recirculation of the fluid in the fountain due to impact on the Lop wall. The

level of IW - 1.95 used in these three-dimensional simulations provided an

optimum view of the regions of strong coherent vorticity and is the same level

used to visualize the impinging jets forced in phase. Therefore, these

figures can also be directly compared with Figure 25.
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Figures 42a and 42b show, respectively, the x-vorticity contours in the

*y-z plane at x 0 and x - 3D. These two figures are at the same time and

correspond to the centerline view of the two jets showing the outflow

direction. The effect of a different phase of forcing results in the two jets

.4.shedding vortex rings at half a wavelength apart. The phase speed in the

impinging jets is unaffected by the phase difference. Figure 42a shows a

large vortex ring impinging on the ground in the left jet, whereas the vortex

ring in the right jet is still approaching the ground. The propagation of the

primary vortex rings in both jets in the outflow direction is basically

similar, and the appearance of the secondary vorticity is observed at nearly

the same location. The liftoff of the primary and secondary vortex rings is

observed near the outflow. The speed of propagation of the vortices in both

the wall jets is around 0.2U.

Figures 43a through 43c show, respectively, at y = 0, 0.51D and 1.5D the

* y-vorticity contours in the x-z plane at the same time as in Figures 40

through 42. These views show the vorticity in the fountain regions looking in

the outflow direction. In Figure 43a, which shows the centerline (y = 0)

plane, the impingment of the vortex rings on each other at the wall jet

collision zone is seen. Due to the phase difference, the vortex rings do not

reach the collision zone at the same time. For a phase difference of rr, the

vortex ring from the left jet is already entrained into the fountain before

the vortex ring from the right jet is lifted off into the fountain. The phase

difference causes the core of the vortex rings from the two jets to be offset

by exactly half a wavelength. The vorticity thickness of the fountain is then

more uniform than for the case when the jets are in phase, in which case the

vorticity thickness grows and shrinks with the passage of two in-phase vortex

* rings. As the vortex rings climb up into the fountain, they are also

stretched, thereby decreasing the strength and size of their cores. However,

they are still distinct in this plane when impinging on the top wall. The

- reverse flow and the entrainment of the wall jet on the top wall into the

S.. impinging jet is also apparent. There is some evidence of the increase in the

jet shear layer due to this entrainment. The structures seen in the center

plane weaken by y - 0.5D, as shown in Figure 43b. The effect of a phase

difference is more apparent in Figures 43b and 4 3c, which are just outside the

impinging jet region and halfway to the outflow. The spread of the fountain
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.%% seems to be increased as compared to the in-phase forcing result. The time

sequence of the vorticity for a forcing cycle shows that the fountain is

flapping near the top wall at a region around y = 1.5D. This is due to the

the arrival of vortex rings near the top wall from the jets half a wavelength

apart. This causes the upwash of the fountain to bend whenever a vortex ring

reaches the top wall. There is an indication of a complicated merging process

occurring near the top wall. The observed motion of the fountain on the top

- wall indicates that the out-of-phase forcing can modify the spread of the

* -. upwash and, hence, significantly affect its liftoff qualities.

To understand the effect of a phase differences on the collision of wall

jets, we show in Figure 44 a sequence of y-vorticity contours in the x-z plane

-showing the region of collision in more detail. These figure are at quarter

.f. cycle apart and are plotted using the same contour intervals. The solid and

dotted lines indicate direction of rotation out and into the paper,

respectively. Thus, the primary vortex rings in the left jet are negative,

and the primary rings in the right jet are positive. Figure 44a shows the

collision region corresponding to Figures 42 and 43. The vortex ring in the

left jet is already entrained into the fountain, while the ring in the right

jet is still being lifted off. As the primary vortex ring is lifted off into

the fountain, the secondary vorticity associated with that ring dissolves.

This secondary vorticity is due to the formation of the wall boundary layer as

the primary vortex rings propagate above the wall. Near the collision zone,

there is a saddle point behavior that is quite complicated. It appears that

the secondary region associated with the right jet is entrained into the left

jet shear zone as can be observed in Figures 44a and 44b. This sequence is

reversed in the next two figures due to entrainment of the secondary region of

* the lef t jet into the right jet. This is due to the phase shif t between the

two vortex rings arriving at the collision zone. This behavior is quite

different from the in-phase forcing studies, which showed a symmetric and

nearly steady secondary region near the collision zone. The observed

* entrainment may modify the strength of the vortex rings in the fountain.

Further analysis indicated that this entrainment weakens as the outflow is

reached due to the breakdown of the primary rings.

Figure 45 shows the z-vorticity contours in the x-y plane as a function of

height. Near the ground (z 0 .14D, Figure 45a), the vortex rings form the
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curved counterrotating pattern similar to the in-phase single jet case. In

these figures, the impinging jet is located in the lower left- and right-hand

corners of the figures but at z = 3D. At a distance of 0.81) above the ground

(Figure 45b), the structure shows the characteristic offset between the left

and the right jet in the fountain in the middle of the figure. The spread of

the fountain and the formation of small-scale eddies is more apparent in

Figure 45c at a distance 1.45D from the ground. On the top wall there is no

significant motion in the x-y plane, and there is also a loss in symmetry

about the fountain axis.

A simulation of the two jets forced at a phase difference of 7/2 was

also performed under otherwise identical initial conditions. There were some

* differences between the two phase difference cases. A forcing at the same

Strouhal number and the same level of Q.lU was performed. Figure 46a shows

the three-dimensional perspective of the view of the fountain region at the

* same elapsed time as in Figure 44. For this visualization, we used a higher

vorticity level to show the vortex rings lifting into the fountain. The vortex

rings from the two wall jets are not offset as for the 7r phase forcing study.

There is some indication of merging in the fountain. The liftoff of the

primary vortex rings into the fountain can be seen clearly in Figure 46b,

which shows the three-dimensional perspective of w W During

axisymmetric forcing, the dominant vorticity in the jet is in the theta

component. Therefore, this figure clearly shows the characteristic

axisymmetric puffs shed by the jet due to forcing. The vortex rings stretch

and the core sizes decrease during propagation. Eventually, these structures

break down into small-scale structures.

Figures 47a and 47b show the y-vorticity contours in the x-z plane at

* y - 0 and y -O.5D, respectively. These figures are at the same time as the

results shown for the i-phase forcing. In these figures, there is an

indication of some type of merging process occurring in the shear layer in the

fountain. For example, in Figure 47a the right fountain shows a merged

structure at around 1D above ground, whereas the left fountain shows a merged

structure at around z - 2D. Due to the phase difference of ir/2, the

vortices in the two wall jets arrive at the fountain a short time apart. This

offset may cause the vortex in one side of the fountain to slow the

corresponding vortex in the other side, thereby allowing it to merge with the

ring following it. The merging is still obvious in the plane y 0 .5D shown
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* in Figure 47b. Figures 47c through 47e show the y-vorticity in the x-z plane

at y = 1.5D for three different times of the forcing. The complex patierns

discussed above are again seen. Both merging and splitting of the vortex

structures near the top wall is seen in this sequence. The tendency of the

fountain to undergo a slow flapping can be discerned in these figures.

The spanwise coherency of the ' )rtex rings on the ground plane can be seen

in Figure 48a, which shows the x-vorticity contours in the x-y plane. These

structures lose their coherence near the fountain axis where the flow changes

direction. The secondary vortex ring ahead of the primary ring near the outflow

is also visible. The coherency of the y-vorticity is dominant in the fountain

region as shown in Figure 48b, which presents the x-y plane view at z = 0.8D.

To understand the dynamics of the fountain further, a simulation was

carried out with only one jet forced. In this case, the left jet at x = 0 was

forced at a Strouhal number of 0.47 and a 0.2U forcing level, whereas the

right jet was maintained at steady-state flow conditions. Figure 49a shows

the three-dimensional perspective view of the fountain region for this

simulation. The characteristic shedding of the vortex rings by the left jet

is clearly visible, and the steady flow in the right jet is also shown.

However, the flow in the fountain is quite different. There is an indication

of structures forming in the right jet as it climbs up the fountain.

Breakd own of the rings in the fountain occurs much earlier than in the

previous simulations. Figure 49b shows another perspective view of this

simulation showing the forced jet region. No vortex rings on the ground for

the steady jet are visible. The breakdown of the vortex rings in the fountain

is again visible in this figure.

Figures 50a through 50c show at y - 0, 0.5D and 1.5D, respectively, the

y-vorticity contours in the x-z plane. It is clear from these figures that

the forced jet sheds vortex rings whereas the unforced jet shear layer shows

the steady flow features. The vortex rings from the forced jet propagate

along the wall towards the fountain axis, where they collide with the steady

wall jet from the right impinging unforced jet. The periodic appearance of

the vortex ring in the fountain from the left wall jet perturbs the right wall

jet at the collision zone. This causes the right part of the fountain to also

start breaking down into discrete vortices that are generally in phase with

the vortices in the forced part of the fountain. The structures shed at the

collision zone are as strong as the vortex rings that initiate the shedding.
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. However, the fountain does not climb up to the top wall smoothly but indicates

a significant flapping motion. This is also quite obvious in the planes y = 0

(Figure 50b) and y = 1.5D (Figure 50c).

The interaction between the two wall jets in the collision zone is similar

to that discussed for the ,-phase simulation. This can be seen in Figures

51a and 51b, which show the collision zone in more detail. As a vortex ring

reaches the collision zone from the left, it seems to perturb the right jet to

generate a weak structure. As the vortex ring in the left part of the fountain

rises into the upwash, it induces the same motion to the structure generated in

the right part of the fountain. Due to the lack of coherence in the right

fountain, the fountain first bends to the left; but further into the upwash, the

fountain bends back due to the growth of the structure in the right fountain.

There is again evidence in these figures of the merging of the secondary

vorticity of one wall jet into the fountain caused by the other wall jet.

* The coherency of the vortex rings in the spanwise direction above the ground

plane is quite distinct. Figure 52a shows the x-vorticity contours in the x-y

plane at z = 0.14D for the case of one jet forced at a Strouhal number of 0.47.

Figures 52b and 52c show, respectively, the y- and z-vorticity in the same

z plane. The vortex rings in the left jet are quite coherent, whereas the

x-vorticity in the right jet is spread out as in the situation for steady flow.
The y-vorticity contours show coherency in the fountain region and also show

that a region of coherent y-vorticity in the right jet is created due to the

forcing effect of the left jet. The z-vorticity contours show only local

regions of rotation.

The effect of forcing on the flow field can also be visualized in terms of

the velocity vector field to show the large-scale recirculation motion.

* Figures 53a and 53b compare the velocity vector field for the cases with the

jets forced at a n/2 phase and a single forced jet. The bending of the

fountain when only one jet is forced is evident in Figure 53b. Comparison also

indicates no significant differences near the wall jet collision zone. Since we

have already seen quite a complicated motion of the vortical rings in the
*i collision zone, it is again clear that the velocity vector field cannot show the

.. regions of vortical motion. The spread of the fountain is quite dramatic in

* Figures 53c and 53d, which show the velocity vector field in the x-z plane at

y = 1.5D. The i/2-phase forced jets case (Figure 53c) shows a much more com-

plicated pattern of recirculation than the single forced jet case (Figure 53d).

S TR-403/4-87 48

'p..
'SM.



4.3 Azinuthally Forced Impinging Jets

In the previous section we discussed the effect of forcing the Jets axisym-

metrically. Both in-phase and out-of-phase forcing of the Jets were studied

in detail, and the characteristic shedding of the axisymmetric vortex rings

was simulated. For those simulations, we assumed symmetry wherever possible

to reduce the computational effort. By this assumption, the generation and

growth of nonaxisymmetric modes of disturbances were excluded. However, this

is not possible in reality. In fact, experiments indicate that the axisym-

metric rings shed by the jet propagate along the ground and eventually break

down possibly due to the growth of azimuthal disturbances. The simulations

discussed in the previous sections did not allow the growth of azimuthal dis-

turbances by virtue of the symmetry condition. However, the growth of azi-

muthal instabilities is of great interest in the case of impinging Jets because

so little of the vortex dynamics is understood. Therefore, in the present

section we present the results of studies of the case where the Jets are forced

in the azimuthal direction. For these simulations, no symmetry in the computa-

tional domain is assumed, and thus the whole domain is computed. Unfortunately,

this causes a fourfold increase in the computational effort as compared to the

axisymmetric forcing discussed in Section 4.2. Therefore, only characteristic

forcing studies have been carried out.

Two different configurations consistent with the axisymmetric forcing

studies have been simulated. The first configuration assumes that the Jets in

the infinite array in the x-direction are all forced in-phase in the same

azimuthal direction. The second configuration assumes that every other jet in

* the infinite array is forced in the opposite azimuthal direction. For the

former case, only a single impinging jet needs to be modeled by virtue of the

0periodic boundary condition at the fountain plane. For the latter case, two

Jets have to be numerically modeled.

4.3.1 In-Phase Forcing

In these azimuthal simulations, the computational domain for a single jet

simulation was a 64x128x32 computational mesh. The computational domain is

bounded by the planes x - xI and x - xF in the x-direction and by the planes

y - y, and y - y2 in the y-direction (see Figure 3). To be consistent with the

previous axisymmetric forcing studies, we investigated azimuthal forcing at

the same Strouhal number of 0.47. A forcing level of 0.IU was used, and both
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the H l 1.5D and H - 3D cases were simulated. The azimuthal forcing function

is defined as

W(9y9 t) =-A wo(r) sin '

where A = 0.1 and (= (2nt/t + 8). Here, (r, 0) are the polar coordinates
p

relative to the jet axis. The forcing function defined above causes the per-

turbation velocity distribution at the jet exit to rotate at the characteristic

frequency of forcing. Although simulations with axisymmetric forcing would be

necessary to study the possible growth of azimuthal instabilities on axisym-

metric vortex rings, such simulations have not yet been performed. Here, we

shall concentrate on the effect of pure azimuthal forcing on the dynamics of

impinging jets. Although azimuthal forcing studies of both of the jet-to-

ground distance cases have been performed, in this section we discuss only

* characteristic solutions that show the effects of such forcing very clearly.

Figure 54a shows the three-dimensional perspective of the total vorticity

.surface for the H - 1.5D case. Here, the jet is forced at St - 0.47 in the

azimuthal direction. The jet is seen in the middle of the figure, and some

structures can be seen in the fountain plane. The azimuthal forcing causes

the velocity perturbation at the jet exit to spin in the clockwise direction.

This causes the impinging jet shear layer to shed in a helical structure.

This helical shear layer impinges on the ground and propagates to the outflow

and the fountain. The lifting of the helical vortex tube into the fountain is

seen in this figure. To visualize the helical nature of the jet shear layer,

we show in Figure 54b the three-dimensional perspective of the w for this

simulation. The helical vortex sheet impinging on the ground can be seen, and

the spiral vortex structure formed on the ground is also seen.

In general, the effect of this azimuthal forcing is not very evident for

the H - 1.5D case due to the close proximity of the two wall planes. The jet

shear layer does not complete more than one helical turn before impinging on

the ground. This causes the vortex structure on the ground to be more

diffused. Due to azimuthal forcing, there is no symmetry in the flow field.

This is evident in Figure 55, which shows the y-vorticity in the x-z plane at

various y-locations. Figure 55a shows the y-vorticity in the y - 0 plane. In

this centerline plane we observe no vortex ring shedding from the jet as was

observed in the symmetric fo:cing case. Vortical structures are observed in

the wall jet and the fountain. These structures are associated with the

helical vortex tubes shed from the jet. Due to the helical nature of the
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vortex tube as it impinges on the ground, the vortex imprint is a spiral, and,

therefore, the vortex structure is not symmetric. The fountains at x = -1.5D

and x = 1.5D are not the same at any given instant. The recirculation of the

vortex into the jet is visible in this figure. The y-vorticity contours in the

x-z plane at y = 0.51D and y = -0.51D are shown in Figures 55b and 55c, respec-

tively. These views are just outside the jet shear layer. The asymmetry of .

the vortex pattern is again evident. Figure 55d shows the y-vorticity

contours in the x-z plane at y - -1.5D. The merging of the structures is

* visible in this figure.

Although a large amount of data was collected for the H = 1.5D case, the

effect of the proximity of the ground plane to the jet exit plane caused the

details to be smeared. The H 3D case showed the structures more clearly,

so we will concentrate on that simulation. Figure 56a shows the three-

dimensional vorticity surface for the helical forcing of the jet at H = 3D.

The forcing was again at St = 0.47 and at a forcing level of 0.1U. This

figure clearly shows the helical shape of the impinging jet shear layer as it

propagates towards the ground. The lifting of the helical vortex into the

fountain is again evident. To visualize the spiral nature of the structure on

the ground plane, we show in Figure 56b the three-dimensional perspective of

the w, at a level of 3.0. This view shows the spiral shape of the

vortex tube and indicates how the vortex tube rises into the fountain.

The helical nature of the jet shear layer can be seenm in Figure 57, which

shows the time sequence of the x-vorticity in the y-z plane at x = 0 for

forcing at St = 0.47. The jet shear layer shows the undulation due to rota-

tion. No vortex rings as in the axisymmetric forcing case were observed. The

jet shear layer impinges on the ground and spreads to the outflow. No signi-

ficant coherent structure is seen near the impingement point in this y-z

plane. However, further downstream the vortex tubes can be seen. The size of

these tubes is not similar to the axisymmetric case. Since all the figures

shown in this report are plotted in the physical domain, the full mesh

simulation results are shown smaller. This is due to the 6Dx3D dimension in

the y-z plane for the azimuthal forcing study as compared to the 3Dx3D domain

for the axisymmetric studies. Regions of secondary vorticity are also observed

in the outflow direction forming just ahead of the primary structures, as was

seen in the axisymmetric cases. Both the primary and the associated secondary

regions show an indication of lifting off as the outflow is approached. This

T

TR-403/ 4-87 51

p.



0I

is again similar to the observations for the symmetric forcing case. The

x-vorticity contours in the x = -0.51D and x - 0.51D planes are shown in

Figures 58a and 58b. These figures show the characteristic asymmetry of the

flow field in the planes just outside the jet shear flow region.

The time sequence of the y-vorticity contours in the x-z plane at y = 0 is

shown in Figure 59. The physical domain in the x-z plane is 3Dx3D. The

shedding of the helical vortex tube is observed in this sequence. The

structures in the two parts of the jet shear layer show the characteristic

tilt of the vorticity in the shear layer. The structures seen in these

figures are not independent but related to each other since the shear layer is

a continuously twisting helical structure. The lifting of the vortex tube

into the fountain is observed around the x - 0 and x - 3D boundaries. The

pattern is not symmetric and shows some evidence of merging of the vortices.

Figure 60 shows the time sequence of the y-vorticity contours in the x-z

• plane at y - -1.5D, and Figure 61 shows the corresponding time sequence in the

x-z plane at y - 1.5D. The two planes are halfway to the outflow, and the

flapping type of behavior of the fountain shown. Complicated structures are

observed, and also a definite indication of the merging process. This is

possible because the vortices in the fountain slow down as they climb into the

upwash and can therefore pair with the structures following them. Comparison

of the sequences in these two figures also shows the asymmetry of the flow

field in the fountain.

Figure 62 shows the time sequence of the y-vorticity in the x-z plane at

y = -0.51D, and Figure 63 shows the time sequence of the y-vorticity contours

in the x-z plane at y - 0.51D. These two planes are just outside the jet shear
flow region, so the jet shear region is missing. These sequences show the

* bending of the fountain with the arrival of vortex structures. These figures

also show the characteristic asymmetry of the fountain. As the vortex rings

climb into the fountain, they start to pair and increase its size. There is

* even an indication of multiple merging occurring in the fountain. Comparison

.O's with figures for the corresponding axisymmetric forcing studies also shows the

difference due to azimuthal forcing.

The variation of the centerline velocity as a function of z is shown in

Figure 64 for the forcing cycle at St - 0.47. Unlike the case with axisym-

metric forcing, no sinusoidal variation is observed. The centerline velocity

of the jet begins to decrease from the value in the jet exit plane but then
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increases in the region of z 0.75H. The velocity then rapidly decays as the
impingement point on the ground is reached.

Figure 65a shows the velocity vector field in the y-z plane at x - 0. The
impinging jet region shown in this figure corresponds to the x-vorticity
contours shown in Figure 57a. The velocity vector field in the y-z plane at

x - 1.5D is shown in Figure 65b. This view shows the characteristic fanlike

behavior of the fountain as it spreads up in the fountain axis. There is an

-: asymmetry in the flow field due to the helical forcing.

Figure 66a shows the velocity vector field in the x-z plane at y - 0 for

* the same time shown in Figure 65. The corresponding y-vorticity contours in
this plane are shown in Figure 59a. The impinging jet and the fountain regions

are shown in this figure. Due to the entrainment observed in this plane the
.. jet appears to spread more as compared to the axisymmetric case. Figure 66b

shows the velocity vector field in the x-z plane at y - 1.5D, which is halfway

4 to the outflow. Figure 61a shows the corresponding y-vorticity contours in

a' this plane. The characteristic large-scale recirculation associated with the

vortex motion is also seen.

Although a secondary vorticity region was observed on the ground just ahead

of the primary vortex spiral, it is not as distinct as in the axisymmetric

case. To determine if the wall boundary layer is undergoing any unsteady
*" separation, we show in Figure 67a the pressure gradient vector field in the

x-z plane at y - 0. This view corresponds to the view shown in Figure 66a.

The secondary region is nearly steady in this case, and the pressure gradient
field shows a region of change in the gradient direction around x - +0.75D.

The rise in pressure at the impingement point and the wall jet collision re-

gions is also observed in this figure. Figure 67b shows the pressure gradient

I vector field in the y-z plane at x - 0 corresponding to Figure 67a. This view

shows the region z < 0.5H and shows the outflow direction. The rise in
pressure at the impingement point is seen in the middle of the figure. There

are regions of change in the pressure gradient direction indicating the possi-
bility of separation of the wall shear layer. Figure 67c shows the pressure

gradient in the region close to the ground. The change in the pressure
gradient direction is clearly observable in this figure.

Figure 68 shows the velocity contours in the x-y plane at various

z-locations for this simulation. These figures show the velocity contour in

the jet region quite clearly. In the z 0.75D plane, the spread of the jet
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as it approaches the ground is observed. The negative contours indicate flow

.- into the paper, and the positive contours in the fountain axis show spread of

the fountain. In the z - 1.5D plane, the jet is more circular, and the

asymmetric spreading of the fountain due to helical forcing is also seen. The

z - 2.25D and the z - 2.98D planes show the velocity contours in the jet

region as mostly circular. The upwash of the fountain is much weaker in these

two planes. A closer observation of the contours in this figure shows that

"- the peak in the jet is not in the same plane but is offset in each figure.

- This is indicative of the helical nature of the forcing, which causes the jet

*- to spin and the jet core to become offset from the center.

4.3.2 Out-of-Phase Forcing

In these simulations the computational domain includes two jets. This

allows simulating flows in which neighboring jets are forced independently. A

*64x64x32 computational mesh is used. The computational domain extends six jet

diameters in each of the x and y directions, and three jet diameters in the z

direction. A plan view of the domain is depicted in Figure 3. The forced

solutions are computed from an initial steady state solution.The results

presented here are obtained at the end of twelve cycles of forcing at a

frequency corresponding to a Strouhal number of 0.47.

Computations for jets subjected to azimuthal forcing are performed for

various forcing configurations. In these computations, the jet located at the

station x = xL (see Figure 3) experiences a perturbation velocity given by

. wL (x, y, t) = -A wo(rL) sin

* where

A -0.2

WL It +

and (rL, eL) are the polar coordinates relative to the jet axis. The jet

located at the station x - (see Figure 3) experiences a perturbation

velocity given by

wR'(x, y, t) - A wo(rR) sin i (38)
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where

2+t (39)
'R t 'R

p
and (rR, eR) are the polar coordinates relative to the jet axis while is the

phase angle shift between the two jets. The sign of OR is taken to be positive

for the case of clockwise (CW) forcing and is taken to be negative for the

case of counterclockwise (CCW) forcing. Figure 69 is a top view indicating

different configurations for the azimuthal disturbances applied at the jet

exits of the two neighboring jets centered at the positions x = x and x .

Each number in this figure indicates a specific disturbance velocity, or a

specific ip value. In addition to the set of solutions obtained by imposing

azimuthal forcing at the jet exits, two solutions have been obtained as

reference solutions. They are an unperturbed flow solution and a solution

obtained by imposing axisymmetric forcing at the jet exits.

The fountain created by the two neighboring jets is located close to the

plane x = xF (see Figure 3) in the middle of the computational domain. This

fountain will be referred to as the central fountain. A second fountain is

generated at the periodic boundaries (x = Xl, x = x2) of the computational

domain. This fountain will be referred to as the side fountain. In general,

these two fountains will not have the same properties since the disturbances

experienced by the two neighboring jets to each of them are not the same. The

vortical structures in the undisturbed jets are shown in Figure 70 where the .

surfaces shown have a vorticity level IWi of 2.1. The vorticity levels in the

volumes enclosed within these surfaces are greater (higher magnitude) than

that of the surface. The figure shows the vortical cylinders composed of the

jet shear layers. In the case of a single impinging jet, the vortical cylinder

expands on the ground plane into a circular disc. However, in the present case

of a row of impinging jets, the circular discs expand until they collide.

Then they expand upwards as vortical sheets in the fountain. The vortical -4

structures at the top plane above the fountains are due to the impingement of

the fountain on the upper plane.

The effects of perturbing the jet exit conditions are investigated below.

Imposing axisymmetric velocity perturbations at the jet exits given by
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V, t) A wo(r L ) sin-

p

wjx,y,t) -- A w (rR) sin 2i
0 t

p

results in vorticity rings, propagating from each of the jet exits, which

alternate in the sign of the azimuthal vorticity wa associated with them.

As the vortical rings impinge on the ground plane, they propagate outwardly away

from the jet axis which leads to an increased radius and a reduced strength.

In the fountain region, the rings expand upward. Figure 71a shows the vortical

rings with azimuthal vorticity levels of -3.1 at their surface. The vorticity

levels in the volumes enclosed within the surfaces shown are lower (higher

magnitude) than that at the surface. This vorticity level is chosen here to

be relatively low to suppress the main unperturbed vortical structures. The

vortical rings shown in the figure coincide with the cores of the vortical

rings which have negative azimuthal vorticity. Vortical rings which have

positive azimuthal vorticity are not shown. Vorticity rings in the ground

plane with large radii and those in the fountain are not apparent in the

figure since vorticity levels in these rings are higher than the value

specified here.

Imposing azimuthal velocity perturbations at the jet exits given by

Equations (38) and (39) with 4 = 0, corresponding to a clockwise-clockwise

disturbance and a zero phase shift, results in two helical vorticity tubes

A propagating from each of the jet exits to the ground plane. The azimuthal

vorticity in one of these helical vortical tubes is positive while it is

negative in the other one. As the helical tubes impinge on the ground plane,

they propagate away from the jet axis. In the fountain region, the tubes

expand upward. Figure 71b shows the helical vortical tubes with azimuthal

vorticity levels of -3.1 at their surface. The vortaical tubes shown in the

figure coincide with the cores of the vortical tubes which have negative azi-

muthal vorticity only. The corresponding vortical tubes for imposed azimuthal

velocity perturbations at the jet exits given by Equations (38) and (39) with

0, corresponding to a clockwise-counterclockwise distrubance and a zero

phase shift, are shown in Figure 71c.

Figure 72 presents y-vorticity contours in the plane of the jets (y y y 0)

for the undisturbed jets, the axisymmetrically forced jets and the six
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azimuthally forced jet configurations indicated in Figure 69. The dashed lines
indicate negative vorticity levels, while the solid lines indicate positive

vorticity levels. For the two azimuthally forced cases in which = 0, the

forcings applied in the plane y = 0 at the two jet exits are identical.

"- Figures 72c and 72d indicate that the disturbances remain identical within the

jets in this plane. For the two cases in which 7 - /2 the forcing applied at

the exit of the right jet lags that applied at the jet exit of the left jet by

a quarter of a cycle. A comparison between Figures 72e and 72f indicates a

similar phase shift in the positions of the vortical structures generated

within the jets by these forcings. For the two cases in which i rr, the

forcings applied in the plane y - 0 at the two jet exits are symmetric relative

-' to the plane x = x Figures 72g and 72h indicate that the disturbance remains
-F4

symmetric within the jets in this plane. Although the initial development of

the left jets is the same in all these cases, deviations become apparent as

the jets approach the ground plane. These deviations are due to the influence

of the right-hand jet, through the fountain created by the collision of the

*: wall jets. Figures 72a through 72h indicate that the general characteristics

of the fountain in the unperturbed flow and the axisymetrically perturbed jets

are shared with those of the CW-CCW azimuthally perturbed flows. In these

- cases, we note that the fountain is confined to the region midway between the

* jets. The lateral interaction between the jets and the fountain seems to be

-weak. The main influence of the fountain on the jets occurs through the

influence of the wall jet on the upper wall, generated by the fountain

impingement. There is an indication of entrainment of this wall jet into the

impinging jet. This can modify the jet spreading characteristics. On the

other hand, the CW-CW azimuthally perturbed flows develop fountains that tend

to extend farther in the x direction towards the neighboring jets. This is an

indication that the spreading rate for the case of the CW-CW forcing is larger

than that for the CW-CCW forcing. The main influence of the fountain on the

impinging jets is due to lateral interaction and not to the influence of the

wall jet at the upper plane. The plane y - 0 for the CW-CW forcing case with

-r, 
=  shown in Figure 72g, is a special plane in which the flow is symmetric

" about the line x - xF. In this particular plane, some of the features ob-

served are not typical of CW-CW forcing. The CW-CCW forcing case with

is a special case since it is the only case in which the plane x x F is a
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plane of symmetry. This case shares the symmetry about this plane with the

unperturbed flow and the axisymmetrically forced flow. This symmetry has a

very strong influence on the fountain characteristics. The figures indicate

that, among all the azimuthally forced flows, fountain characteristics for the

CW-CCW forcing with T i (Figure 72h) are the closest to those of the two

reference cases (Figures 72a and 72b).

Figures 73a through 73h and 74a through 74h present y-vorticity contours

in the planes y = -1.5D and y = 1.5D, respectively, for the same cases

presented in Figure 72. While the central and side fountain characteristics

in Figure 72 were in general agreement, Figures 73 and 74 indicate some

dissimilarity in these characteristics in certain cases. The discussions

presented here will be limited to the central fountain characteristics unless

otherwise specified. The individual vortical structures apparent in Figures 73

and 74 are cross-sections of vortical tubes moving upward into the fountain.

The figures indicate that the individual structures tend to merge. Distinct

*[ features are observed among solutions resulting from CW-CW forcing and among

solutions resulting from CW-CCW forcing. In the case of CW-CW forcing the

vortical structures move upward in a direction inclined to the plane x = XF%

towards the left, in the negative x direction at the plane y - -1.5D. At this

plane, the vortical tubes originally shed by the left jet, with negative

vorticity, move toward this jet resulting in a reduction of vortex "ring"

radius and an increased vorticity strength. The individual vortex structures

merge into a larger structure nearly circular in its cross sectional shape

extending to the left. The vortical tubes originally shed by the right jet,

with positive vorticity, move away from this jet resulting in an increase of

vortex "ring" radius and a reduced vorticity strength. The positive vorticity

region tends to branch to the right towards the jet at which it originated and

to the left above the negative vorticity region. At the plane y - 1.5D, the

-i vortical structures move upward in a direction inclined to the plane x - XF,

,* towards the right, in the positive x direction. At the plane y - 1.5D, a

similar picture develops to that observed in plane y - -1.5D, however, with the

*. positive and negative vortical tubes reversing their role. Vortical tubes with

*. negative vorticity tend to move away from the jet at which they originated,

-" while vortical tubes with positive vorticity tend to move toward the jet at
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which they originated. This role reversal indicates that significant changes

occur in the vortical tubes along their length in the fountain. Figures 73

and 74 indicate that the vortical structures spread in a relatively wide region

sideways in the x-direction, however, they extend to relatively low levels

upward. The symmetry observed in the plane y - 0 about the plane x - xF for

the fountain developing in the case of CW-CW forcing with 4 - r is no longer

observed in the planes y = -1.5D and y - 1.5D.

In the case of CW-CCW forcing, the vortical structures move upward in the

general direction defined by the plane x - xF . They spread in a relatively

narrow region sideways in the x direction. In the vertical direction the

vortical structures extend upward to levels in the plane y - 1.5D higher than

those in the plane y = -1.5D. The strong similarity observed in the plane

-. y = 0 between the fountain developing in the case of CW-CCW forcing with 4 -=

and the two reference solutions continues to be apparent in the planes y - -1.5D

and y = 1.5D.

The results presented here for the azimuthal forcing are limited to a

single time, i.e., they correspond to a particular B value which we denote as

B 0 , where 27t/t = constant + B. A second set of solutions half a cycle later

at 2 - a + 7 for the central fountain may be constructed from a knowledge of

the side fountain solution at B 0. This solution for the central fountain

at G B + T is obtained at y = + Y by applying the transformation

(x - xF) - - XF)

to the side fountain solution obtained at y - + Y for B B-o Moreover, the

side fountain provides solutions for several additional cases. For example, in

the case of CW-CW forcing with - /2, the side fountain is equivalent to a

central fountain resulting from CW-CW forcing with 4 - -7/2, at B - B - iT/2.
0

Similarly in the case of CW-CW forcing with ) - n the side fountain is equivalent
to a central fountain resulting from CW-CW forcing with 4 - -7, at B "B 0 - 7T.

In view of the new information obtained from the side fountain, it is appro-

priate to review Figures 72 through 74 and to identify two solutions for each

forcing cycle. It is apparent that the general shape of the fountain structure

remains nearly fixed. Within a forcing cycle the inner details of the fountain

structure will slowly vary due to the movement of the vortex tubes. However,

it is noted that the individual sizes of the cross section of these tubes are
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1% smaller than the corresponding tubes in the jet, due to the stretching that

takes place. Secondly, the flow velocity in the fountain is smaller than that

in the jet. This indicates that changes in vortical structures in the

fountain occur at a much slower rate than in the jets. These observations are

also confirmed by Figures 75 and 76 where vorticity contours are presented at

different times for a complete forcing cycle. The figures are presented for

the two planes y - 0, and y - -1.5D for the case of CW-CW forcing with c = 0.

The y-vorticity contours presented for different x-z planes have indicated

that common features are shared among the members of each of the two sets

investigated (clockwise-clockwise disturbance and clockwise-counterclockwise

disturbances). An investigation of the y-vorticity contours in the x-y planes

leads to a similar conclusion. These contours for a single case ( = 0) from

each of the two sets are presented in Figures 77 and 78 with the corresponding

contours for the two reference solutions. The contours are given at the two

planes z - 1D and z - 1.5D. A comparison between the case of axisymmetric

forcing and the undisturbed case indicates relatively high vorticity levels of

1w I within the jets for the axisymmetric forcing case at z = ID and lower
y

levels at z - l.5D. This simply indicates the presence of a vortex ring with

negative azimuthal vorticity at the plane z - 1D and the presence of a vortex

ring with positive azimuthal vorticity at the plane z - 1.5D. As a result,

the basic vorticity levels in the jet are augumented at the first plane and

weakened at the second plane. The vorticity distribution in both the

clockwise-clockwise and the clockwise-counterclockwise cases differ from the

previous two reference cases. However, the similarity between the reference

cases and that of the clockwise-counterclockwise disturbance is greater than

that between the reference cases and that of the clockwise-clockwise

disturbance. In Figures 77d and 78d, showing the effect of a clockwise-
counterclockwise disturbance, the fountain is nearly symmetric. Its direction

only deviates slightly from the direction of the undisturbed fountain. That

is, the y-z plane midway between the jets is basically the plane going through

the middle of the fountain. There does not seem to be strong interaction

between the fountain and the jets. The jets are well defined at the upper

plane (z 1 1.5D) and as they reach the lower plane (z - ID) they are still

well defined. In Figures 77c and 78c showing the effect of clockwise-

clockwise disturbance, the fountain is no longer symmetric about the y-z plane

..
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at mid-distance between the jets. It is, however, inclined to that plane.

There seems to be interaction between the fountain and the jets as indicated

by the vortex structures connecting them. The effect of the fountain on the

jets is relatively strong. The well-defined jet vortical structure at the

level z - 1.5D near the jet exit becomes ilidefined as the jet reaches the

plane z = 1D.

The main features for the different forcing conditions were concluded from

vorticity contour plots. The same features are apparent in velocity vector

plots. For the two reference solutions, the CW-CW solution with - 0 and

the CW-CCW solution with 0 velocity vector plots are shown in the plane

x M x F (see Figure 79), the planes y - 0 (see Figure 80), y - l.5D (see

* - *Figure 81), and y - 1.5D (see Figure 82). Figure 79c indicates that the

fountain deviates from the plane x = xF except near y - 0 for CW-CW forcing.

Figure 79d indicates that some deviation from the plane x - x F is also present

for CW-CCW forcing, however, to a much lesser extend. Figures 80 through 82

indicate features similar to those observed from the vorticity plots. These

figures indicate that the impingement of the fountain on the upper wall is

relatively weak for the case of CW-CW forcing and that it is relatively weak

for the case of CW-CCW forcing at y - -1.5D while it is relatively strong for

the same case at y - 1.5D.

The results presented up to this point present a clear picture of the

fountain characteristics. Three main categories may be identified:

(1) Undisturbed Flow and Axisymmetric Forcin

Here the fountain is symmetric about the plane x - x F and about the

plane yr - yj. The fountain occupies a relatively narrow region near the

plane x - x., indicating relatively weak lateral spreading. There is

* relatively little lateral interaction between the fountain and jets.

However, the impingement of the fountain on the upper plane is relatively

strong. The wall jets which develop on the upper wall due to this

impingement are entrained into the impinging jets near the jet exit. The

* main influence of the fountain on the jet occurs through this entrainment.

(2) Clockwise-Counterclockwise Azimuthal Forcing_

Here the fountain is nearly symmetric about the plane x x xF' However,

it is not symmetric about the plane y - yj. The fountain occupies a

relatively narrow region near the plane x - x., indicating relatively

weak lateral spreading. There is relatively little lateral interaction
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between the fountain and the jets. The impingement of the fountain on the

upper plane is relatively strong for positive y-values where the directions

of the azimuthal forcing at the Jet exits is such that they both are

directed towards the plane x = xF . The impingement of the fountain on the

upper plane is relatively weak for negative y-values where the directions

of the azimuthal forcing at the jet exits is such that they both are directed

away from the plane x - xF. The wall jets that develop on the upper wall

due to the fountain impingement are entrained into the impinging jets near

the jet exit. The main influence of the fountain on the Jet is due to this

entrainment.

(3) Clockwise-Clockwise Azimuthal Forcing

Here the fountain is inclined to the plane x - xF. For negative y-values,

the fountain is directed towards the negative x-axis that coincides with

the clockwise direction there. For positive y-values, the fountain is

directed towards the positive x-axis that coincides with the clockwise

direction there. The fountain spreads in a relatively wide region in the

direction of the neighboring jets. The impingement of the fountain on the

upper wall is relatively weak. The main influence of the fountain on the

jets is due to their lateral interactions. The fountain generated in this

case has the strongest influence on the jets among the three categories.

This is due to the strong lateral spreading of the fountain.

Based on kinematic considerations explanations may be found for the results

observed. Figure 83 shows the vortex tubes in the wall jets as they approach

the fountain base. For the case of axisymmetric forcing, these tubes are in

the form of rings that are nearly circular. The spiral shape of the vortex

tubes in the cases of azimuthal forcing results in the relative positions shown

in Figure 83a for the tubes as they approach the fountain base for the case of

CW-CW forcing and the corresponding relative positions shown in Figure 83b for

the case of CW-CCW forcing. The figure is shown for the case 4- w. While the

midplane between the tubes at the base of the fountain in both the axisymmetric

p. - forcing case and in the case of CW-CCW forcing is the plane x - xF, the

- midplane in the case of CW-CW forcing is a plane inclined to the plane x x

to the right for positive y values and to the left for negative y values. As
A

the vortex tubes shown in Figure 83 at the base of the fountain expand upward

m..
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into the fountain, the configurations indicated in Figure 84 result. The

circular vortex tubes resulting from axisymmetric forcing touch the fountain

base initially at the plane y -0. As these tubes are convected upward into

the fountain, they take the shape of arcs symmetric in the y-direction about

the plane y - 0, while the plane x - xF becomes a plane of symmetry between

the two tubes. In the case of CW-CW forcing, Figure 83a indicates that the

end c of the right vortex tube segment and the end b of the left vortex tube

segment reach the plane x - x Ffirst, then the end d of the right vortex

tube segment and the end a of the left vortex tube segment reach the plane x

x The plane x - xF Is the plane of symmetry for the fountain generated

by the basic undistrubed flow. The inclined vortex tubes shown in Figure 83a

will tend to modify the fountain plane. The final plane will be somewhere

between that defined by the unperturbed flow and that in the direction defined

by the perturbation vortex tubes. Therefore, the plane x - ' F should no

* longer be the reference plane, strictly speaking, however, it is used here for

the purpose of showing some qualitative characteristics. Assuming that the

vortex tubes generated by CW-CW forcing expand upward at the plane x - xF

then the relative positions of the tubes will be as shown in Figure 84b. We

note that the average height of the structure composed of both tubes remain

fixed along the y direction. Finally, the vortex tube segments resulting from

CW-CCW forcing will collide at the base of the fountain, as shown in Figure

83b. The ends b and d will reach the fountain base before the ends a and c.

The resulting configuration as the tubes expand into the fountain is shown in

Figure 84c. Figures 84a through 84c show, in a simple manner, the relative

positions of the vortex tubes resulting from different forcing configurations.

The results presented earlier indicated that the vortex tube interactions are

* more complex than presented here, including recombination of vortex structures

-/ and deformation of the vortex tube shapes. Nevertheless, the simplified

sketches of Figure 84 do allow us to explain some of the results associated

with the different types of forcing.

The main characteristic shared by Figures 84a and 84c is the fact that the

plane x - x'F is a plane of symmetry. Consequently, the flow is restricted

in the x direction. This commnon factor explains the great similarity between

the axisymmetric forcing results and the CW-CCW forcing results with 4 IT,

previously presented. As shown in Figure 84b, the symmetry about the plane

x - is nonexistant except locally at the plane y -0. In the plane y -0,
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Figure 72 indicates a great deal of similarity between the case of CW-CW

forcing with $ - r and the case of axisymmetric forcing. In the planes

y = -1.5D and y - 1.5D, however, where no symmetry exists, the differences

between the two cases are apparent in Figures 73 and 74.

For values of other than 7, the relative vertical positions of the

two tubes shown in Figures 84b and 84c slightly changes. The main effect in

Figures 84b would be to displace the local plane y - y j, at which symmetry

exists about the plane x xF' to another near by plane. The role reversal

* observed at stations y - -1.5D and y - 1.5D for the vortical tubes generated

at the left and right jets for the case of CW-CW forcing can be explained by

Figure 84b where the relative positions of the tubes are reversed at these two

planes. In the case of - 7, the plane y - 0 is the plane about which an

antisymmetry exists in the relative positions of the vortex tubes. A comparison

between Figures 73g and 74g indicates that this antisymmetry in the shapes of

vortex structures does exist in planes y - -1.5D and y - 1.5D. For the cases

0 and 1 f r/2, however, the point at which the two tubes of Figure 84b

coincide is no longer at the position y - 0. Therefore, the planes y - -1.SD

and y - 1.5D are not the planes at which the relative positions of the tubes

are exactly reversed. Therefore, a general reversal in the roles of the

vortical structures associated with the tubes is observed at the planes

y = -1.5D and y - 1.5D, however, a complete antisymmetry is not observed. This

is indicated by a comparison of Figures 73c and 74c for - 0 and 73e and 74e

for 7 = /2. The main effect in Figure 84c of specifying values other than

- I is to destroy the symmetry about the plane x = xF. However, the two vortex

tubes do remain parallel even though a relative shift in their vertical posi-

tions occurs. Therefore, the vortical tubes originating from two neighboring

* jets mesh together in an organized fashion in the fountain generated between

the jets. This organized meshing of the vortex tubes in the case of the CW-CCW

"- forcing is the common feature shared by all members of this group regardless

of the phase shift. In the case of CW-CW forcing, the vortex tubes generated

S., at the two neighboring jets are inclined in different directions as indicated

In Figure 84b. This relative position does not allow the organized meshing of

the vortex tubes, resulting in the relatively unorganized fountain characteris-

tics observed in the different CW-CW forcing cases. The inclination of the

vortex tubes shown in Figure 84c coincides with the observed results, which

indicates that for CW-CCW forcing, vortical structures reach a relatively high
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" level at the plane y "1.5D while they reach a relatively low level at the

plane y -1.5D. For the axisymmetric forcing, we have assumed in our compu-

tations a zero phase shift. The effect of using a phase shift value other than
A. zero would be to vertically displace the relative positions of the two vortex

* tubes shown in Figure 84a. The main difference between this case and the

CW-CCW forcing with @ 0 would be the symmetry across the y - 0 plane in the

axisymmetric case and the nonsymmetry for the CW-CCW forcing. Other than this

difference, both flows are expected to be similar with no symmetry across the xF

plane, however, with an organized meshing of the vortex tubes in the fountain.

Three-dimensional views of the vortical structures resulting from axisym-

metric, clockwise-clockwise and clockwise-counterclockwise forcings with - 0

-". are presented in Figures 85a-85c. As in Figure 70, the surfaces shown in these

figures are those with a vorticity level given by LI 2.1. In Figure 85a,

-it is apparent that the vortical rings resulting from axisymmetric forcing.

deviate from their initial axisymmetry, as they move downwards in the jets, due

to the influence of the fountain. This is particularly apparent in the rings

with positive w9 vorticity. The vorticity in these rings tends to cancel the

negative w0 vorticity associated with the unperturabed flow. The figure

indicates that the levels for 1loI are higher in the jet "sides" facing the

' fountain than in those "sides" facing the outflow boundaries. The near planar

• vorticity sheets in the fountain are a common feature between Figures 70 and

85a. The vortical structures in Figure 85b (CW-CW forcing) appear to be no

longer planar in the fountain region. A three-dimensional branching of the

*vortical tubes is observed in the fountain region, with some branches extending

to the jets. The vortical structures in Figure 85c (CW-CCW forcing) are inter-
"S

mediate in nature between those of Figures 85a and 85c. They are no longer

planar, and some vortical tubes are seen to be breaking away from the main

, fountain structure, however, the structures are still confined to the region

* mid-distance between the jets and the strong branching and three-dimensional

character of Figure 85b is not observed here.

4.4 Randomly Forced Impinging Jets

In the previous three sections we investigated the effects of coherent

-, forcing in the development of the impinging jets. In all the previous

calculations, we assumed that the flow field is laminar initially and is then

* perturbed at the prescribed frequency. Although complicated vortex ring
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propagation and merging processes were observed, they were all controlled by

the forcing frequency~ies). No attempt was made to model the turbulent flow

field. Since the present numerical approach utilizes large-eddy simulations

with subgrid-scale modeling, it is expected that all scales within the grid

* resolution can be resolved. Thus, the observation of small-scale structures

* - in the flow field during axisymmetric and azimuthal forcing is realistic.

However, the origin of all the structures observed in the previous coherent

forcing studies is dependent on the initial conditions. Therefore, if the

.r*. initial condition is random in origin, the development of the flow field will

be random in general, and any formation of large-scale structures in the

domain will be the result of natural growth of the instability imbedded in the

* random initial field. Such turbulent simulations have been the main avenue of

research into turbulent flows in mixing layers and jets. A recent study by
8Childs et al. investigated the collision of turbulent wall jets by

* introducing random disturbances into the mean profile at the inflow. In the

present study we shall discuss some results obtained when the impinging jets

in the present case were forced in a random manner.

In Section 2.3 we presented the rationale behind the random field

generation. The random velocity field so generated can be imposed in the

inflow and the computations continued. For realistic simulations, the full

computational domain used for the azimuthal forcing needs to be used for

realistic random field development. However, this would require an extensive

computational effort and, therefore, has not been studied in great detail.

Some simulations have been performed using random forcing initial conditions

under some simplifying assumptions. The random field is generated according

to the formulation discussed in Section 2.3. We then assume symmetry in the

* x- and y-directions for the computational domain in a manner similar to the

axisymmetric forcing study. The random field is then imposed on the quarter

plane of the jet exit such that only the lowest Fourier modes are present.

The symmetry assumption was used to reduce the computational effort required

to understand the effects of forcing at random frequencies. This assumption

essentially reduces the problem to simulating the flow with multiple

frequencies that are generated randomly according to the rules discussed in

Section 2.3. Therefore, the simulation using symmetry in the domain is

strictly not random. But the jet flow can be studied under such assumptions to

understand the dynamics of vortex formation resulting from random excitation.
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A simulation was performed using the symmetry assumption for Re =1000 and

the H - 3D case. he random field in a 32x32 domain was generated for a

simulation time of length T under the assumption of symmetry in the x- and

y-directions. This random field is then imposed in the quarter plane of the

jet at its exit location such that at each time step a new random field is

* added to the jet exit velocity profile. The computations shown in this simu-

lation assumed a relatively high turbulence level of 10 percent. This was

required to overcome the inbuilt dissipation of the numerical scheme and the

damping effects of the ground plane that would suppress the natural growth of

the random modes. It was determined that, for low-level forcing, a very long

period of time integration has to be performed to obtain any significant

statistical information. To avoid the large computational time required for

* such simulations, we have utilized a high forcing level of 10 percent. This

is, of course, consistent with the study of coherent forcing studied in the

previous sections. It must also be mentioned that the results presented in
this section are still somewhat preliminary, since there are various variables

that need to be looked at for simulating the random field as discussed in

Section 2.3.

Figures 86a through 86c show the characteristic x-vorticity contours in

the y-z plane at three different times. This view shows the x - 0 plane,

* which is the centerline plane. The figures correspond to the instantaneous

* vorticity field after random forcing was initiated from steady-state initial

conditions. There is no clear indication of the shedding of a large-scale

structure in the jet shear layer. This is expected, since the forcing at

random does not necessarily excite the jet at the jet-preferred mode.

However, there is an indication of a vortical structure in the jet shear layer

* forming just before Impinging on the ground plane. As the jet shear layer

curves outwards and propagates towards the outflow, there is the formation of

a structure in the wall jet region. This vortex seems quite coherent further

downstream and then shows signs of lifting off from the ground. Figure 86b

* shows on careful study that there are possibly two vortex cores in the

structure impinging on the ground. Evidently, random forcing does cause the

* formation of large scale structures on the ground. This observation is in

agreement with experimental observations of random excitation of jets. In the

experiments, the jet when forced randomly causes the most unstable mode to

JP
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grow naturally from the random background. This growth of the most unstable

waves causes the jet shear layer to undergo rollup and then pairing until the

large-scale structure is formed at the jet-preferred frequency. In free Jets,

this large coherent structure is usually formed within four jet diameters

downstream. Since, in the present simulation, the jet height is three jet

diameters, it is possible that the jet-preferred mode is not reached before

the jet impinges on the ground.

The appearance of secondary vorticity is similar to the coherent forcing

case and is observed around y - 2D. The downstream propagation and the

lifting of the primary-secondary vorticity is again observed. These vortices

maintain their coherency even at x - 0.51D. as shown in Figure 86c, indicating

that these are vortex rings. The distribution of the y-vorticity in the x-z

plane is shown in Figure 87. Figure 87a shows the y - 0 plane showing the jet

and the fountain region in the center plane. There is evidence of the vortex

cores in this figure, and the recirculation of the fountain on the top wall is

also observed. Vortical motion in the fountain is visible, indicating that

quite a few structures have been entrained into the fountain. Figures 87b and

87c show the y-vorticity contours ir the x-z plane at y - 0.51D and y - 1.5D,

respectively. In these planes we see the characteristic upwash of the fountain

and the impingment on the top wall. In general, the view in these figures is

quite similar to the axisymmetric simulations.

To show that the observed structures in Figures 86 and 87 have any spanwise

coherency, we present in Figures 88a and 88b, respectively, the x- and

y-vorticity contours in the x-y plane at z - 0.14D. This plane is just above

the ground and shows the characteristic vortex rings on the ground, indicating

that the structures formed in these simulations are also quite coherent.

A simulation was also performed in which a coherent mode at the frequency

corresponding to St - 0.235 was added to the random initial field. The

results indicate that the coherent mode organizes the randomly excited

vortices into larger and more coherent structures. The fountain is also more

coherent indicating that perhaps coherent forcing can be utilized to control

the behavior of the fountain.

It seems from this calculation that the forcing studied using axisymmetric

forcing is quite reliable for understanding the dynamics of the large vortex

rings on the ground and the formation of the fountain. The limitations

imposed by assuming symmetry in the x- and y-directions can be relaxed without

any problem except the increase in computational effort.
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5. ODNCIUSIONS

The results presented in .,s report catalog the findings of the study of

impinging jets under both coherent and random excitation. These results have

been obtained using a three-dimensional, incompressible Navier-Stokes solver

* that was developed to simulate the problem of an infinite row of jets impinging

on the ground. This problem contains the essential physics of the case of a

VTOL aircraft hovering near the ground. The characteristic flow field of the

*exhaust of the engines near the ground is very complex containing motion in a

wide variety of scales. The approach used here applies the large-eddy

4simulation techniques to resolve scales above the grid resolution and uses a

subgrid model to simulate the cascade of energy into the unresolvable scales.

The grid resolution used in these simulations is the largest possible using

* state-of-the-art computers such as the CRAY XQMP without causing a significant

increase in cpu time. Although the present grid resolution is insufficient to

I resolve the finer details of the small-scale motion, especially in the wall-

bounded shear layer regions, it is quite adequate to resolve the large-scale

- motion. Therefore, the present study focuses on the motion and dynamics of

* large-scale structures that have been experimentally observed in jet flows.

To investigate this complex physical process, we perturb the mean jet exit

* velocity profile by superposing a prescribed disturbance. The resulting

* motion of the impinging jet is simulated using a time- and space-accurate

*numerical scheme. To characterize the motion due to different families of

possible disturbances, we have studied separately the effect of forcing the

impinging jet using axisymmetric, azimuthal and random disturbances. The

* principal advantage of studying the motion of forced jets is that the forcing

suppresses the natural Instability of the jet, and the motion of the large

structures In the jet is governed by the imposed excitation. Therefore, the

effect of external excitation can be studied in detail.

Since the primary interest in this study was to investigate the motion of

large-scale structures In the flow, we force the jet at frequencies cor-

responding to a Strouhal number range of 0.23 to 0.47. This range falls in

* the range uf the jet-preferred mode instability observed in a wide variety of

experiments. It has been pointed out that, in jet flows, the formation of the

large-scale structures occurs at the so-called jet-preferred frequency that

corresponds to a Strouhal number range of 0.24 to 0.64. 28Therefore, to
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simulate the motion of these large-scale structures, we force the jet in the

"* above-mentioned range.

An enormous amount of data has been collected on the three-dimensional

flow field for various forcing conditions during the course of the present

* investigation. Due to lack of time and resources, all the data has not yet

been analyzed in detail. However, the results presented in this report

provide sufficient information to characterize the large-scale motion caused

by coherent excitation. To visualize the formation, motion, and breakdown of

the large-scale structures, extensive use has been made of the spatial and

"- temporal variation of the three components of the vorticity vector. Both

two-dimensional and three-dimensional representations have been used to study

. the structures in the flow.

The results obtained from the study of axisymmetrically forced impinging

jets indicate both quantitative and qualitative agreement with some experi-

mental observations. A large axisymmetric vortex ring is shed by the jet at

,. the frequency of forcing that impinges on the ground and propagates above the

*. ground. The calculated phase speed of the impinging vortex ring is similar to

the experimental value. During propagation on the ground, a region of

secondary vorticity appears just ahead of the primary vortex core, again in

* agreement with the experimental observation. Further downstream this

secondary vorticity rolls up into a vortex ring of opposite rotation, and

there is some indication that the counterrotating vortex rings start to lift

off tae ground due to their mutually induced velocity fields. This has also

been observed experimentally. The formation of the secondary vorticity has

been attributed to the unsteady separation of the wall boundary layer caused

by an adverse pressure gradient on the ground. The numerical results appear

to agree with this hypothesis. The calculated phase speed of the vortex rings

on the ground is lower than the experimental value obtained with an isolated

impinging jet. Since, in the present case, an infinite row of impinging jets

has been simulated, the presence of the adjacent jet causes the formation of a

fountain at the midplane between two jets. This fountain forms due to the

collision of two opposite wall jets on the ground and then climbs up and

impinges on the top plane. During vortex propagation on the ground, the vortex

ring is entrained into the fountain, resulting in the lifting of the vortex

ring from the ground. Thus, as the vortex ring continues to propagate to the
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outflow boundary, it is also lifted into the fountain causing it to twist and

finally break up. Due to the close pro,. 'nity of the ground to the jet exit

plane, the spread of the fountain on the top plane recirculates and shows signs

of reentrainment into the impinging jet. This results in an increase in the

spread of the jet.

9 The formation of the fountain is a unique characteristic of multiple

impinging jets. A consequence of the impingement of the fountain on the top

wall is an increase of pressure on the plane resulting in an increased liftoff

effect for a VTOL aircraft. Since this is an important factor in the operation

of VTOL aircraft in ground effect, the dynamics of the formation and spreading

of the fountain were studied in more detail. Two impinging jets were simulated

such that the forcing frequency and phase of each can be varied independently.

At present, the effect of phase difference has been studied in detail. The

two jets were forced at the same frequency but with a phase difference of rt

* and 1T/2, respectively. The results indicate that the effect of the phase

difference is to stagger the vortex rings on the ground from the two jets.

This causes the fountain to entrain vortex rings from each jet at a different

* time. A detailed study of the wall jet collision zone indicates a complex

flow pattCern caused by the phase difference. The fountain spread is more

- - uniform for the ir phase difference case, and these simulations also showed a

* complex merging pattern near the top wall. Another simulation with only one

jet forced was also carried out that indicates a complex pattern near the wall

jet collison zone. Due to the forcing of one jet, the vortices in it and hence

in its wall jet perturbs the steady wall jet of the other jet. This causes

the steady wall jet to undergo a disturbance at the same frequency of the

appearance of the vortex ring in the wall jet collision zone. The resulting

fountain thus again shows vortical motion from both the wall jets. However,

the fountain is no longer uniformly spreading up and shows a significant

* flapping behavior. These simulations show quite clearly that the effect of a

phase difference between two impinging jets can significantly modify the motion

S. and structures in the fountain. It is expected that the effect of varying the

forcing frequency will also result in significant changes in the dynamics of

the fountain. A complete parametric analysis can be easily be carried out

- .~ provided enough resources are available to determine the effect of frequency

and phase differences on the spread of the fountain. This in turn will provide

'ep
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information on the effectiveness of the fountain to provide the liftoff effect.

For example, since realistic flow fields are usually highly turbulent, the

formation of large coherent structures due to the natural excitation of the

impinging jet may not be a highly periodic or energetic event. In this case,

the fountain spreads much more rapidly and has been observed in some experi-

ments to result in a weak liftoff effect. Thus, a possible solution to

increasing the liftoff effect will be to perturb the jet exit velocity profile

in a coherent manner so that large coherent structures are shed. This would

result in a more coherent fountain and hence an increase in the liftoff effect.

However, to determine an optimum situation would require further study as

discussed above.

The characateristics of the impinging jet flow due to azimuthal excitation

were also studied. The jet was again forced at the same frequency at St = 0.47.

The results indicate the characteristic formation of the helical structures

* due to azimuthal excitation. The asymmetry in the fountain due to azimuthal

forcing is also clearly indicated in the results. The vortical structures in

the wall jet are less coherent as compared to the axisymmetric forcing studies.

The response of the fountain to various azimuthal excitations applied at the

exits of its neighboring jets was investigated. The disturbances at the jet

exits were applied with phase shifts of 0, 7/2, and iT. Fountain characteris-

tics were shared among the different cases in which the disturbances were

applied in the clockwise direction in both jets. A different set of charac-

teristics was shared by the cases in which the disturbances were applied in

the clockwise direction at one of the jet exits and in the counterclockwise

direction at the other jet exit. In the case of clockwise-clockwise forcing,

the fountain spreading towards the neighboring jets and its interaction with

* them is relatively strong. The fountain plane in this case is inclined to the

plane that is normal to the plane of jet axes. The impinging effect on the

aircraft's undersurface in this case is relatively weak, indicating a weak

fountain liftoff effect. In the case of clockwise-counterclockwise forcing,

* the fountain is confined to a relatively narrow region near the midplane

between the jet axes. Its interaction with the neighboring jets is weak. The

Impinging effect on the aircraft's undersurface is relatively strong.

-,wver, it is not uniform in the direction normal to the plane of jet axes.

Iftoff effect is relatively strong in the half of the fountain in which

72



the disturbances in both jet exits are directed towards the fountain plane,

I while they are relatively weak in the half in whichi these disturbances are

directed away from the fountain plane. The observed weak lateral spreading

of the fountain is due to lateral flow restrictions, imposed by the existence

of a plane of symmetry through the fountain for the case of a Tr phase differ-

ence. For the general case with 7 I, the weak lateral spreading is due to

the well-organized meshing of the vortical tubes in the fountain. These two

effects are also present in the case of axisymmetric forcing. Consequently,

strong similarities exist between the fountain characteristics in the cases of

axisymmetric forcing and azimuthal clockwise-counterclockwise forcing. These

effects, however, are not shared by the case of clockwise-clockwise forcing.

Some study of the impinging jet under random excitation has also been

performed. The random field was determined by prescribing the energy spectrum

and the rms value of the fluctuation and is imposed on the jet profile as a

function of time. The results indicate that there is no clear formation of

vortex rings in the jet as in the coherent forcing studies. However, as the

-' jet impinges and spreads on the ground, there is a definite indication of

coherent vortical motion in the wall shear layer that is also coherent in the

spanwise direction. Simulations using both random forcing and a coherent

forcing frequency were also performed, and the results indicate that the

effect of the coherent frequency is to organize the motion in the impinging

jet and also to form a more coherent vortex ring on the ground. This again

clearly indicates that coherent excitation of randomly forced impinging jets

can possibly modify and organize the motion. This could result in a more

coherent fountain, thereby increasing the liftoff effect of the fountain.

5212R/5438R
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a. view of the impinging jet and the outflow at a
level tI-1.95

b. view of the impinging jet and the outflow at a
level t'I -3.72

Figure 16. Three-dimensional perspective of the vorticity surface at t -37.98
for axisye tric forcing at St - 0.47 for 8I1.5D.
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Figure 28. Variation of the velocity profiles as a function of z- for a
forcing Cycle at St " 0.47 for 1H - 31).
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Figure 28. Variation of the velocity profiles as a function of z for a

forcing cycle at St - 0.47 for R - 3D. (Cont.)
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Figure 30. Three-dimensional perspective of the vorticity surface for
combined forcing at St - 0.235 and 0.47 for R - 3D. View of
the impinging jet and the outflow at t - 50.64; ILA1 - 1.95.
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c.x 0 plane at t -54.84 d. it- 0.51D plane at t -54.84

Figure 31. Time sequence of the x-worticity in the y-z plane f or forcing at
St - 0.235 and 0.47 for R - 3D (contour interval - 0.4).
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Figure 37. Variation of the y-orticity contours in the x-y plane for combined
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Figure 38. Spreading of the Impinging jet and the fountain for combined
forcing at St 0.235 and 0.47.
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a. vorticity level is IwI - 1.95

I.l

b. vorticity level is Ii " 2.50

Figure 40. Three-dimensional perspective of 
the vorticity surface at t - 22.5

for two jets forced axisymmetrically at St - 0.47 with a phase

difference of ir for H - 1.5D. 
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a. view of the impinging jets

and the outflow at a level

i I - 1.95

4%

Figure 41. Three-dimensional per-

spective of the vorticity surface at
t - 25.3 for two jets forced axisym-

metrically at St - 0.47 vith a phase

difference of I for 9 - 3D.

b. view of the impinging jets

and the fountain at a level

kIw- 1.95

i'.
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ab view of the impinging jets

and the outflow at a level

we 2.75.

Figure 46. Three-dImensional. perspective of the vorticity surface at t -25.3

for two jets forced azlsywametrically at St -0.47 with a phase

% difference of nt/2.
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Figure 48. Vorticity contours at t = 25.3 in the i-y plane for jets forced at
St -0.47 vith a phase difference of ir/2 (contour interval -0.4).

4TR-403/4-87 135

awl



Figure 49. Three-dimensional per-
spective of the vorticity surface
at t 21.1 for only one jet forced
at St 0.47 at a level hI*1.95.

a. view of the jets and the fountain]

b. view of the jets and the outflow
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Figure 54. Three-diension& 
perspective of the vorticity surface for a jet forced

aziuthally at St -047 for R 1.5D. The forcing level is .1U.
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Figure 57. Time sequence of t~he x-vorticity contours in the y-z plane at x
for azlimuthal forcing at St - 0.47 (contour interval -0.7).
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Figure 64. Variation of the centerline velocity as a function of z for an
azimuthally forced cycle at St 0.47 for H -3D.
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a. axisymmetric forcing

b. CW-CW forcing, 7

-"-

c. CW-CGW forcing, -0

* Figure 71. Three-dimensionlal perspective of the vorticity surface We -.
for forced double-jet computations.
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Figure 74. y-vorticity contours In the I 1.5D plane for forced double-jet

computations (contour interval -0.4).
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